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Final Report to CUBRC:
NCTI Software Prototype and Technology
Demonstration

Joseph A. O’Sullivan
Department of Electrical Engineering

Washington University, Campus Box 1127
St. Louis, MO 63130

1 Introduction

Washington University has worked on a contract for $ 34,250 for CUBRC, to
support efforts on the Expert Science Program Task Order PR-A-6-1753, “NCTI
Software Prototype and Technology Demonstration.” This report has two parts.
The first part is a brief summary of the work. The second is an appendix and is
a complete copy of the doctoral thesis of Steven P. Jacobs. The work described
in this doctoral thesis was supported in part by the CUBRC funds. Thus, this
thesis describes not only work completed for CUBRC, but describes in detail a
more comprehensive effort, extending the results done for CUBRC in significant
ways.

In previous efforts, Washington University in St. Louis (WU) worked with
Rome Laboratory for over three years on the project »Signal Processing Hierar-
chy for Radar and Communications,” contract F30602-92-C-004. WU developed
novel algorithms for hostile target identification. The approach addresses some
limitations of current hostile target identification techniques. : ,

In the proposal to CUBRC, the following items were identified as being
necessary before the code developed at Washington University could be ready
for running on real data:

o modify the code to accept real data inputs including requisite preprocess-
ing

e perform a verification of the ability of Xpatch to predict real data
o modify the code to run on Xpétch data

e extend the code to perform recognition based on a sequence of range pro-
files ’



incorporate more target types

demonstrate the ability of the code to distinguish between these target
types for Xpatch data sets

Washington University and Jim Llinas of the University of Buffalo have made
progress in all of these areas. These are detiled below and in the appendix, and
include:

we have modified the code to accept real data provided by Rome Labora-
tory

we have compared the output of Xpatch to real data provided for a DC-10

we have modified the code extensively to run on many types of output
data from Xpatch

we have extended our code to perform recognition based on sequences of
HRR data :

we have incorporated many more target types

we have demonstrated through extensive simulations the ability to distin-
guish between targets using Xpatch generated data sets

In addition, we have made progress on other fronts including:

L J

we have improved the model for the sensor to decrease sensitivity to ori-
entation errors’

we have compared two different models for the radar data, demonstrating
their relative benefits

we have extended our simulations to ground targets as well as airborne
targets

we have acquired and have used extensively a comprehensive database of
simulated range profiles of four ground targets, the URISD

we have used simulated data at a variety of bands
we have started to model polarized data

we have found an independent source for real data to be used in the future

We also met in St. Louis with personnel from Rome Laboratory.
These different areas of progress are outlined below and in the appendix.
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2 Rome Laboratory Visit

On June 28, 1996, Vincent Vannicola, David Bunker, and Bill Baldygo of Rome
Laboratory visited Washington University in St. Louis. The meeting included
discussion of the project originally funded by Rome Laboratory that started
in December 1991 and continued through July 1995. The final report for that
project was discussed in detail including the interactions between Rome Labo-
ratory and Washington University as part of that effort. Washington University
has been involved in two efforts through CUBRC, including this project. Both
were discussed.

For this project, the objectives of the project were discussed, including how
they fit into the overall goals of research funded by Rome Laboratory. The areas
in which Washington University, working with Jim Llinas, planned to make
progress were outlined-these areas are listed in the introduction and discussed
in more detail below.

3 Model Development for Improved NCTI Sim-
ulations

The algorithms developed by WU under previous Rome Laboratory sponsorship
are designed to perform recognition of radar targets using high resolution radar
(HRR) data and tracking data. The algorithms perform joint target tracking
and recognition because the two problems of tracking and recognition, especially
using HRR data, cannot be decoupled. There is a natural synergy between the
tracking and recognition through their use of orientation information. As part
of the recognition, the target orientation is estimated. The orientation estimates
are fed to the tracker thereby improving tracking performance. If the tracking
is improved, then the kinematic models for the target yield improved estimates
of the target sequence of orientations, and hence improved prior information on
the riext orientation of the object. This improved prior then improves the orien-
tation estimate at the next step. Since orientations are used in the recognition
process, recognition performance increases.

The approaches developed under previous Rome Laboratory support and
extended as part of this effort with support from CUBRC use Bayesian methods.
There is a prior on the sequence of orientations that a target assumes in any
given scene derived from a dynamical model for the target. The dynamical
model is based on the standard Newtonian dynamics of a target in motion. In
its most general form, there is a six degree of freedom model, yielding twelve
differential equations for the motion. These twelve differential equations have
six different inputs that summarize the inputs of including thrust, aerodynamic
drag, aeleron deflections, etc. The parameters within the model include effects
derived from the size and shape of the aircraft including wing area, moments
of inertia, mass, etc. Thus, in the extreme case, each aircraft may have its own
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model for motion. In practice, aircraft are separated into classes such that each
class has its own aerodynamic model. The inputs to the equations are modeled
by random processes. These induce likelihood functions for the state process in
the model, yielding priors on the orientations and positions of the aircraft.

The general approach described in the last paragraph may be applied to
derive a prior on the sequence of orientations and positions using any appro-
priate dynamical model. It should be mentioned that in the standard tracking
literature, much more simplified dynamical models are used. They are typically
linear and have at most six states (positions and velocities). One of the differ-
ences that we promote vigorously (and has been proposed by others who are
also looking at ways to merge high resolution data and low resolution tracking
data) is the explicit modeling of the coupling between the orientation and the
tracking model. Note that if one senses a change in orientation prior to a change
in the velocity vector, one can anticipate the change in the velocity vector that
will result. Thus, highly maneuverable targets may require orientation mea-
surements and incorporation of orientations in the dynamics in order to achieve
acceptable tracking performance. In our case, the measurements of orientation
are through the HRR data which are very sensitive to target pose.

In the Bayesian approach, the prior is combined with a sensor likelihood
model conditioned on the target position and orientation. This prior includes
effects due to additive noise and due to the randomness inherent in the target
signature. One of the major breakthroughs that has been made as part of
the doctoral work of Steve Jacobs. which has been supported in part by this
effort, is the proposal of using a conditionally Gaussian model for HRR data.
This has led to a model that is much more robust to target orientation. That
is, the traditional difficulty with using a deterministic model (as promoted by
those who rely extensively on high quality signature prediction code) is that
the range profiles decorrelate over small changes in aspect angle. For example,
at X-band frequencies, this could be over two hundredths of a degree. On the
other hand, the Gaussian model is robust on the order of five degrees. That is,
the Gaussian model may require a factor of over 160 fewer templates than the
deterministic model. One might expect that with that many fewer parameters,
the performance may suffer. This is not the case, however. This fact is discussed
in detail in Steve Jacobs’ doctoral thesis that makes up a large part of this
report. In there, joint tracking and recognition simulations are shown that
indicate better performance using the conditionally Gaussian model.

We anticipate that this breakthrough will be key to developing realistic sys-
tems to perform recognition using HRR data. The conditionally Gaussian model
requires less storage, requires fewer computations per recognition step, and per-
forms better in joint tracking and recognition than the deterministic model.

iv




4 Improvement of NCTI Simulations: Xpatch
Data |

The NCTI simulations have been modified to accept a wide variety of Xpatch
generated data. These have used a DC-10 airframe CAD model that we pur-
chased, X-29 and F-15 CAD models delivered to us as part of Xpatch, a HIMWV
CAD model that has been adapted from a different simulator, and data from the
University Research Initiative Synthetic Dataset (URISD) described below for
their M1 tank, T1 tank, School bus, and Firetruck (ground targets). The mod-
els have been run and used data for UHF wideband, L-band, S-band, X-band,
and near millimeter wave band (35 GHz). We have used different polarizations
and multiple polarizations.

The DC-10 model was used to simulate HRR range profiles for comparison
with the actual range profiles collected from a DC-10 as it flew by Rome Lab-
oratory. Such data collected by the Rome Laboratory radar have no ground
truth associated with them. These targets of opportunity do not have instru-
mentation on board so that the operator of the radar would know to within
small orientation windows the exact relative orientations of the targets and the
radar. As a result, the orientations used to generate the simulated data could
not match the actual orientations. Washington University personnel tried to
guess the relative orientations, but had little success. The simulator would need
to know to within a fraction of a degree the orientation of the target in order
to get a valid comparison of simulated Xpatch data and real data.

In connection with this, Washington University personnel discussed with
personnel at MIT, at an Wright laboratory and at several Army laboratories
their understandings of the ability of Xpatch to generate data that match real
data. Tt has been the experience of many of them that Xpatch data have the
same general characteristics of real data, but do not match the real data exactly.
That is, the relative orientation changes needed to decorrelate real data and
Xpatch generated data are approximately the same. Also, the dominance of
some scattering sites is approximately the same. Many of the details of the
range profiles generated by Xpatch are different from real data, however.

It was decided, with consultations from Rome Laboratory personnel, that
the simulations should continue to pursue the problem of recognition based
on Xpatch range profiles. The results should give indications of the ability of
a system to perform joint tracking and recognition on real data. The main
difference between a real system and that used in the simulations would be that
the real system would be trained using real data rather than Xpatch generated
data. '

The simulations were extended to run on all of the targets described in this
section. Extensive simulations were run to show the ability of the algorithm to
perform joint tracking and recognition.



4.1 URISD

Washington University worked with Jim Llinas of the University of Buffalo and
with several contacts at Rome Laboratory to identify suitable sources of target
CAD models and sources of real data. In addition, Washington University
personnel made contacts to attempt to find other sources of data.

One of these contacts was with researchers at the Massachusetts Institute
of Technology, in their Laboratory for Information and Decision Systems, and
at Boston University. Alan Willsky and his co-workers at MIT and Clem Karl
of Boston University had access to the University Research Initiative Synthetic
Dataset (URISD). Rome Laboratory personnel worked with us and with Air
Force Office of Scientific Research personnel to gain approval successfully for
Washington University to acquire the URISD. This dataset consists of simulated
HRR returns for four simulated ground targets. The dataset is described in
detail in Steve Jacobs’ thesis in the appendix, so it is just summarized here.
The four synthetic targets are an M1 tank, a Tl tank, a school bus, and a
firetruck. Each target was illuminated by UHF wideband, L-band, and X-band
signals. For each illumination, there were four polarizations collected (vv, vh,
hv, hh). This was done at each of three elevations. At each elevation, HRR
range profiles were collected over the entire circle of azimuth (at a sampling
rate increasing with increasing carrier frequency).

While the URISD is not ideal from the perspective of air-to-air encounters,
it does constitute a comprehensive dataset that can be used for extensive sim-
ulations. It is the most complete dataset of HRR simulated data that we have
found. .
Described in the appendix are joint tracking and recognition simulations
using the URISD. '

4.2 Real Data

Washington University worked with Jim Llinas of the University of Buffalo to
discuss with contacts at Rome Laboratory the possibilities of collecting new
HRR data using the S-band sensor at Rome Laboratory and of identifying ex-
isting datasets that would be appropriate for use in the NCTI simulations de-
veloped at Washington University. The possibility of collecting new HRR data
using the S-band sensor at Rome Laboratory was deemed to be too ambitious
for this project. There were not enough funds devoted to accomplish this and
in fact the S-band radar apparently was not available for such experiments.
Jim Llinas and contacts at Rome Laboratory working with us identified
possible existing datasets at Rome Laboratory for possible use in an HRR sim-
ulation. In addition, Rome Laboratory had previously provided data to Wash-
ington University for use in this research. It was decided that the data already
supplied to Washington University was of the same quality as the remaining
data. An example of the type of computations performed on these data is
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described on pages 66 and 67 of Steve Jacobs’ thesis in the appendix.

In order for real data to be used in an extensive simulation effort, there
must be HRR range profiles collected over a wide variety of target orientations
for use in development of the library. These range profiles (let us call them
the training data) must have extensive ground truth known about them, and
provided to the developers of the algorithms. The ground truth must include
precise measurements of the relative positions and orientations of the target and
the sensor for each of the range profiles. In addition, the data must have tracks
in them for use in training for joint tracking and recognition. A separate dataset
should be available for testing any algorithms derived using the training data.

Washington University developed collaborations with researchers at MICOM
as part of their efforts on a different project supported by the Army Research
Office. As part of those collaborations, a dataset was identified that fulfilled
the requirements described above. Unfortunately, this dataset (the ARTI-1
dataset) was not delivered to Washington University until after the completion
of the CUBRC contract. Washington University researchers hope that this
dataset will be used at some time in the future. There is one major limitation
of using this dataset. The results will not be directly comparable to Xpatch
data. The identities of the targets have been removed from the dataset because
of clearance considerations. Thus, we will not be able to generate Xpatch data
for direct comparison purposes. However, we hope to be able to demonstrate
the algorithm working on real data, which would be a large step toward an
actual implementation. ‘

5 Conclusions

Washington University personnel, working with Jim Llinas of the University
of Buffalo, and working on projects related to and extending this effort, have
miade significant progress on all of the areas identified in the original proposal.
In addition, progress has been made in several related areas. Perhaps the most
significant is the derivation of a new model for HRR range profile data that
could change the way the algorithms for recognition from HRR, data run. This
will be pursued vigorously in future research.

In addition to pursuing the conditionally Gaussian model paradigm for tar-
get recognition, there are several other areas for potentially fruitful research
pointed to by this project. These include running the simulations on the newly
acquired real data set, determining the role of fundamental limits on the ability
to estimate target orientation in the recognition problem, including polarized
data in a more powerful way, and looking more seriously at multisensor fusion.
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ABSTRACT
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Recognition of aircraff and ground targets from high resolution radar (HRR)
range-profiles is a notoriously difficult problem, due in large part to the extreme
variability in the data for small changes in target orientation. To achieve recognition
in the presence of this variability, the problem is posed in the context of joint tracking
and recognition of a target using a sequence of observed HRR range-profiles. The
likelihood function for the scene configuration combines a dynamics-based prior on
the sequence of target orientations with a likelihood for range-profiles given the target
orientation. The recognition system performs joint Bayesian inference on the target
type parameter and the sequence of target orientations at the observation times.
| Successful récognition is critically dependent on an appropriate model for the

HRR range-profiles. A deterministic model and a conditionally Gaussian model are

ix




introduced, and the likelihood functions under each model for varying orientations
and target types are compared. The comparison is extended to include both aircraft
and ground targets, different radar frequency bands, and full polarimetric range-
profiles. The results of these comparisons show better performance for the condi-
tionally Gaussian model in terms of the potential for correct recognition when the
orientation estimate has significant error.

Fundamental limits on the performance of estimators of target orientation are
obtained for the two models in terms of a Hilbert-Schmidt lower bound on the ex-
pected errors. The bound is evaluated for each model using simulated data as a
function of the intensity of the noise in the observations. This analysis provides a
specific criterion for model selection for this problem.

Simulations are presented in which each of the sensor models is combined with
a constant orientation rate model for the target dynamics to produce an algorithm for
joint tracking and recognition using HRR data. Results from the simulations show the
performance of the algorithm in the presence of additive noise, including the expected
angular estimation error and the probability of correct recognition. The algorithm

using the conditionally Gaussian model achieves supérior performance while requiring

significantly less memory.
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Chapter 1
Infroduction

A problem of considerable interest within the field of estimation theory is the recog-
nition of objects from observations made with remote sensors. This problem appears
in a variety of application-specific contexts including automated manufacturing, au-
tonomous vehicle navigation, and face recognition. In this thesis, we will be concerned
with a particular variant of this problem known as automatic target recognition or
ATR. In the ATR problem, the goal is to classify ground vehicles or aircraft as viewed
through a variety of remote sensors. This has applications both in a military context,
in which the goal is to determine the identity of potentially hostile targets without
relying on visual contact, and in civilian air traffic control, in which the goal is to
monitor the identity of all aircraft in the vicinity of a given airport. Many of the
conventional systems employed for such problems rely on the targets to communi-
cate their identities explicitly to the recognition system. In contrast, we will address
the problem in which the targets are non-cooperative and do not communicate their
identities.

The problem of automatic target recognition receives a wide variety of formal
definitions in the literature, depending on the specific application being addressed.
These problems may be divided into two broad groups. Most researchers investigating
the ATR problem consider a context in which a single object or target is to be
recognized. This constitutes the first group of ATR problems. The second group, in
which multiple targets are to be recognized using the observation of multiple sensors,

is discussed in the next section. In this first group, the object position is known to
a high degree of accuracy, such that a high resolution sensor can be focused on the
target, and a sequence of observations are recorded. Also, it is often assumed that
the sensor has an unoccluded view of the target. The goal is to classify the target



as one of a finite set of possible target types, based on the observations collected.
Loosely stated, the problem is “if I am staring at it, can I recognize it?” The sensor
data are assumed to exhibit a predictable dependence on the target shape in order
for recognition to be successful. Sensor data in the form of imagery or radar echoes
are generally dependent on the orientation of the target relative to the sensor. Thus
the problem of ATR in this context becomes one of providing a characterization of
the data one expects to observe from a given target at varying orientations, such
that when novel data from a target are obtained, the identity of the target may be
determined. Clearly such systems will be dependent on an appropriate mathematical
model for the data as determined by the physics of the sensor. The primary goal of
this thesis is to investigate models for a high resolution radar (HRR) sensor, and to

evaluate these models in terms of the ability to recognize targets using radar data.

1.1 Joint Detection, Tracking, and Recognition of
Multiple Targets

In a military scenario, we must consider a considerably more general recognition

problem than that discussed above. In this version of the ATR problem, multiple
targets are encountered whose positions, orientations, and indeed presence or absence
are unknown a priori. This constitutes the second broad group of ATR problems.
A system for ATR to be deployed in such a scenario must be able to recognize all
of the targets present in such a complicated scene. Researchers in the Center for
Imaging Science have posed the problem in this general context, and have proposed
a very ambitious solution. In order to account for all of the variability present in
the scene, the proposed system is required to detect all targets as they enter or
leave the scene, to track the positions and orientations of all targets as they move
within the scene, and to recognize all targets. Multiple sensors are employed for
this purpose, including low resolution sensors such as tracking radars that contribute
primarily to the detection and tracking of targets, and high resolution sensors such
as high resolution radars, forward-looking infrared or FLIR cameras, and optical
imaging systems that contribute primarily to estimation of the target orientation
and recognition. The goal of the system is to perform inference on the complete

configuration of the scene, given all of the available sensor data.




A very complete exposition of the system proposed for ATR in the general
context is given jointly in the overview by Miller [47] and in the dissertation of Sri-
vastava [76]. The foundations for the scene representation and the resulting inference
algorithms are derived from pattern theory as developed by Grenander [30]. The rep-
resentation for the scene configuration is developed in the natural parameter space
for all of the targets. An aircraft target will have, for any fixed time, a position that

takes its value in JR® and an orientation that is represented by a 3 x 3 rotation matrix
that takes its value in the group SO(3). Also associated with the target is a discrete
label a; taking its value in the discrete space A;. As we will ultimately be interested
in estimating the target positions and orientations at the times when they are ob-
served by the various sensors, as well as recognition of the target, we form a track for
each object as the concatenation of these positions and orientations, together with
the target type label. Thus a track for an aircraft target observed at n; discrete times

takes its .value in the space
(R® x SO(3))™ x A;. (1.1)

A scene inhabited by m; aircraft, such that the summed length of all 7, tracks is

givenr by ny(m,), is an element of
(R® x SO(3))m0m) x A, ' (1.2)

Ground vehicles present in the scene are assumed to move on flat ground, such that
their position lies in JR? and their orientation is described by a 2 x 2 rotation matrix
in SO(2). Let the target type label for ground vehicles a, take its value in the set A,.
‘Extending the previous notation, a scene inhabited by m; aircraft and m, ground

vehicles has tracks z(m;, m;) € X(m;, m;), where

X(m1,mz) = (R® x SO(3))(™) x AT x (R? x SO(2))™(™) x A2  (1.3)

Since the number of targets is unknown a priori, the complete parameter space for

the scene configuration is

X = Ej D X(ml,mg). (14)

my=0 ma=0



By posing the ATR problem in this general context, we are required to per-
form inference on a parameter space that is very large and complex. However, this
also allows us to constrain the possible estimates of the scene configuration by taking
advantage of known relationships between the various parameters. The inference al-
gorithm employed in this context empirically reconstructs the posterior density for the
scene configuration conditioned on the observations through random sampling. Let
y denote the complete history of all sensor measurements and let z denote the scene
configuration to be inferred. Then the posterior density p(z|y) may be decomposed

through Bayes’ rule as
p(zly) o p(z)et ), (1.5)

where p(z) is the prior on the scene configuration z, eX(¥1%) is the likelihood function
for the data, and the constant of proportionality is independent of z. The prior
p(z) includes a complexity prior on the number of targets as well as a prior on the
kinematic state of the target that is derived from an appropriate model for the target
motion. In the case of aircraft targets, the Newtonian equations of motion prbduce
a series of twelve differential equations relating the position and orientation of the
target to the forces and torques acting on it. Given a sequence estimates of the
position and orientation derived from previoﬁs observations, the equations of motion
are used to induce a prior on the position and orientation of the target at the time
of the next observation. The maximal use of prior information in this way allows us
to construct an inference algorithm that visits candidate scene configurations of high
posterior probability. '

Multiple sensors are used to view the scene. A tracking sensor may be included;
the resolution of this sensor is assumed to be larger than the target dimension, so that
the data produced are independent of the target shape and orientation. For recog-
nition, we have investigated the use of several high resolution sensors, and examined
the improved performance when using multiple sensors to view the same target. The
high resolution sensors under consideration include an oi)tical imaging sensor such as
a video camera, a FLIR camera, and a high resolution radar. Models for each of the

sensors are developed and are used to derive likelihood functions for the observations

conditioned on the parameters. A primary component of this thesis is the derivation
of two candidate models for the high resolution radar sensor, and the comparison of
the recognition and orientation estimation performance under these models.

The inference algorithm developed for ATR by' Miller, et al. [31, 47] and Sri-

vastava [76] seeks conditional mean estimates of the scene configuration under the




posterior density. The key to this approach is to construct a random sampling algo-
rithm that follows jump-diffusion dynamics, such that empirical averages generated
by the algorithm converge to the conditional mean under the posterior. The jump-
diffusion algorithm consists of discrete jumps in the parameter space that are executed
at random exponential times, and between these jumps the algorithm proceeds con-
tinuously according to a diffusion process. The jump moves are used both to estimate -
the naturally discrete parameters such as the number of targets and the target types,
and also to allow the algorithm to make large changes in the estimates of the con-
tinuous parameters, when such changes are supported by the data. The diffusion
process smoothly deforms a history of position and orientation estimates following
a stochastic differential equation. Details concerning the construction of the jumps
and the diffusion process can be found in [47, 76]. The key to the success of this
approach is to choose the parameters of the diffusion process such that the posterior
measure p on the complete parameter space is also the unique stationary measure of
the jump-diffusion process we construct, and the process so constructed has the er-
godic property that the sample averages generated converge to the expectation under
the posterior. A theorem establishing this important ergodic result is given in [76).
The approach as outlined above is the appropvriate context in which to frame
the ATR problem. The algorithm is computationally intensive and requires multi-
ple sensors. However, it has several important advantages that make it attractive,

including:
¢ multiple mobile targets are accommodated,

e the simultaneous solution of the tracking and recognition problems allows the

estimation of target type to improve tracking and vice-versa, and

e fusion of data from multiple sensors occurs naturally within the Bayesian frame-

work.

1.2 Joint Tracking and Recognition Using HRR
Data | |

Work on development of an ATR system under this approach clearly requires work in
several areas, only some of which are the subject of this thesis. For further information

concerning closely related work conducted in the areas of sensor characterization,



kinematic priors derived from dynamical models for target motion, and the recognition
problem in general, see {23, 50, 48, 47, 60, 62, 61, 77, T8, 76]. Specifically, this
thesis addresses the modeling of high resolution radar data, optimal processing of
the data for estimation of orientation and target type as derived from these models,
and performance of estimators for jointly estimating target type and a sequence of
target orientations from a sequence of observations. In order to investigate these
issues, we have examined a simplified ATR problem in which the goal is to jointly
estimate a sequence of orientations and the target type from a sequence of observed

range-profiles. Addressing this problem allows us to focus on specific issues relating

to the HRR data.

Consider a single target that has been detected and tracked, such that an
HRR sensor can be properly aimed at it. The target is illuminated by a sequence
of radar pulses, and the received echoes, known as range-profiles, are collected. Let
r%(t) denote the kth range-profile, and 6y the orientation of the target during the kth
illumination. The collection of observations Ry and the sequence of orientations O

up to the time of the kth measurement are given by

Rk = {'r‘l(t),’l‘g(t),...,rk(t)} ‘ - ek = {917923"‘a0k}‘ (16)
Also,let a € A be a discrete label ,vindicating the target type.

The joint posterior density for the measurements conditioned on the param-
eters is decomposed through Bayes’ rule into the product of a prior density on the

parameters and the likelihood of the observations given the parameters, -
p(Oxk, a|Ri) o< p (O, a) p(Ri|Ok, a). (L.7)

Because the orientations 6, and the observations rx(f) occur sequentially, we may

write

k
p(Ok,a|R) x p (6o, @) [T p(6e]0e-1, ) e-retRe-1:002), (1.8)
=1

In the cases of a deterministic model for rx(t) or conditionally independent observa-

tions, the posterior may be written as the product

k
P(Ok, a|Ry)  p (6o, a) [ P (0|01, ) ellrelfea) (1.9)

£=1

N




where p(f, a) is a prior on the initial orientation and the target type, p(6¢|O¢-1,a)
is a prior on the £th orientation, given all previous orientations and the target type,
and L(r¢|0¢,a) is the log-likelihood of the fth observation, given the {th orientation
and the target type. :

The prior p(0¢|©@¢-1, a) is derived from an appropriate dynamical model for the
target motion. Note that we cannot make use of the kinematic prior derived from
the equations of motion as used in [47, 76], because we are assuming no availability
of tracking information. In the simulations of Chapter 5, we will consider simplified
dynamical models that allow us to place deterministic constraints on the sequence of
.estimates produced by our algorithm.

Of crucial importance to the performance of an estimator for this problem is
the behavior of the data log-likelihood L for varying orientations and different target
types, which in turn depends on the model chosen for HRR data. A primary factor
making recognition from range-profiles difficult is the extreme variability in the ob-
served data for small changes in target orientation. This represents a considerable
modeling challenge as the model must accurately predict the variation, but the re-
sulting recognition algorithm should be robust with respect to this variation. The
choice of possible radar data models and the relative merits of two candidate models

are discussed in Chapter 3.

1.3 Contributions

The original contributions of the research comprising this dissertation relate to the
use of the high resolution radar sensor for orientation estimation and recognition. A
deterministic model for HRR data, which is well-known and is presented for example
in Van Trees [86] and Smith [73], is applied to simulated data, and the resulting
likelihood function for varying orientations and target types is examined. Previous
efforts have used deterministic models for ATR which assume that the target consists
of a small number of scattering centers, which is not assumed here. A conditionally
Gaussian model is applied directly to complex-valued range-profile data, and the
likelihood function is analyzed in terms of the potential for recognition. This is
a model for range-profiles that has not appeared previously in the literature, and
that yields better performance for recognition of targets than any model we have
seen. The conditional Gaussian model is extended to the case of fully polarimetric -

measurements, and the likelihood functions under two models for the polarimetric




covariance matrix are compared to the likelihood using a single linear polarization
channel. ,

Both the deterministic and conditionally Gaussian models are analyzed to de-
rive bounds on the performance of orientation estimation using HRR data. This
provides specific criteria for model selection for this problem. We know of no other
effort in which deterministic and stochastic models for HRR data are compared in
this context. A class of orientations that produce equivalent range-profiles under cir-
cular polarization is defined, and equations that transform an arbitrary orientation
described by three Euler angles to a pair of angles that uniquely identify the equiv-
alence class are derived. The problem of resolving the ambiguity resulting from this
equivalence using linear polarization is investigated, and a necessary condition for the
maximum likelihood estimate is obtained in the form of a transcendental equation.

Two simulations are presented demonstrating the potential for joint tracking
and recognition using a simple dynamical model for the target motion and data from
only a HRR sensor. This is different from the methods investigated by Libby [45, 44]
in which the maximum likelihood estimates of the orientations for two consecutive
observations are computed individually, and dynamic programming is used to gener-
ate a sequence of orientation estimates. Other distinctions include that the method
of constraining the sequence of orientation estimates produced by Libby’é algorithm
is not derived from a dynamical model for the target motion, and Libby assumes
the availability of tracking data in the form of range, range rate and pointing angle
measurements which we do not. Other investigators working on this problem assume
knowledge of the target orientation in order to perform recognition without specifying

how that knowledge is to be obtained.

1.4 QOutline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents a review of
the open literature pertaining to automatic target recognition using high resolution
radar, including an extensive compilation of various techniques employed to address
this problem, and a discussion of various models for HRR data that have been applied.
Chapter 3 gives an introduction to concepts in high resolution radar, derives two can-
didate models for HRR data, and goes on to conduct a series of tests of the recognition
performance under each model by examining the likelihood functions using simulated

data. Chapter 4 presents a characterization of local and global errors in orientation
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estimates obtained using HRR data, describes possibilities for resolving some global
errors, and investigates fundamental limits on the performance of orientation estima-
tion and recognition using examples of simulated HRR data. Chapter 5 describes
three simulations we have developed demonstrating the potential for joint tracking
and recognition using HRR data. Finally, Chapter 6 identifies the major results that
have been obtained in this thesis and gives a listing of a variety of challenging areas

in which continued work is required for this problem.




Chapter 2

Review of Literature

This chapter contains a review of the open literature relating to the issues addressed
in this thesis. We begin by examining conventional approaches to the problem of
recognition using high resolution radar data. This is followed by several efforts in
which recognition is posed as a Bayesian inference problem, other efforts in which
orthogonal subspace projections are used for recognition. We discuss the work of
Libby, who is the only other author we have found who investigates joint estimation
of a sequence of orientations and target type from a sequence of observed range--
profiles. The chapter is concluded by examining deterministic and stochastic models
for high resolution radar data that have been proposed for use in recognition.

It should be pointed out that there are a number of other references in the
literature concerning recognition of targets using range-profile data that are not cited
here. All of the references that we have been able to obtain which provide the results of
recognition of realistic targets using high resolution radar range-profiles are described
in this chapter. Some of the references we obtained that do not meet the above
criterion were omitted. Also note that there is a great deal of work on the problem of
recognition of objects using synthetic aperture radar (SAR) imagery. No commentary
on these efforts will be given, other than to say that one of the problems associated
with using SAR images is that it may take an uha.cceptably long time to collect the

data for each image.

2.i Conventional Methods for Radar-Based ATR

Over the years, a wide variety of algorithms have been proposed for identifying aircraft

from radar reflections. This section describes a number of such methods. that have
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been termed “conventional,” because they are largely derived from three historical

developments in radar-based ATR:

e The demonstration by Copeland that the polarization of reflected radar waves

is related to a target’s global shape.

e The assertion by Ksienski and others that target-specific information can be
extracted from a target via multi-frequency radar reflections at wavelengths on

the order of the overall target dimension.

o The assumption by Moffat and others that the impulse response of a radar target
can be characterized by a small number of orientation independent natural

resonances.

This section describes each of these developments and later extensions and published

results in using them for target identification.

2.1.1 Historical Developments
Polarization Features

One of the earliest proposed methods for classification of objects based on their re- -
flection of radar transmissions was that of Copeland [22]. The target is modeled as
a pair of coupled antennae, a linear reflector and a sphere, and data are collected
by rotating a linearly polarized receiving antenna about the line-of-sight and mea-
suring the complex received voltage as a function of rotation angle. These data are
processed to extract three parameters that are used for identification: the axis ratio
of the polarizé.tion ellipse for each of the two hypothetical antennae and the relative
tilt angle between these ellipses. Copeland goes on to show that these parameters
take on significantly different values for various simple reflectors and postulates that
comparison of the parameters measured for a given target to these known values will
allow classification among the various reflector types. This result is important be-
cause it demonstrates that the polarization response of a radar target is dependent

on its shape.

Multi-frequency RCS

Ksienski [41] proposes a target identification scheme based on multi-frequency mea-

surements of the radar cross section. A set of n measurements of a radar target at
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a particular aspect angle is represented by a point in n-dimensional complex space.
Classification of a target is performed either by a linear discriminant, in which the data
space is divided into class-specific regions by hyper-planes, or by a nearest neighbor
technique, in which classification is achieved by comparing an observed range-profile
to a library of signatures recorded for a discrete set of aspect angles. The nearest
neighbor technique assumes some degree of knowledge of the aspect which resulted in
the observation. Results are reported from classification studies using experimentally
obtained data for simple shapes and scaled models of existing aircraft. The primary
result is that the linear discriminant is suitable for pairwise classification of these
objects, but when it is desired to identify an observed target as belonging to a single

class out of many, the nearest neighbor approach is superior.

Natural Resonances

A third method of radar-based target identification given by Moffat [33, 52, 54] is
based on the assumption that the impulse response of a radar targef is dominated
by the effects of a small number of low-frequency natural resonances. The resonance
frequencies and their amplitudes, which are assumed independent of both the tar-
iget orientation and the polarization of scattering data, are computed from thin wire
models of the targets of interest using Prony’s method and stored as a library. Identi-
fication is performed by comparing the ramp response of the target synthesized from
multi-frequency scattering measurements to a ramp respbnse calculated using the
stored natural resonances. Results are presented which show successful classification
of three aircraft models so long as scattering data are available at a sufficient number

of harmonically related frequencies.

2.1.2 Refinements and Extensions
Time Domain Classification

Chen [17] extends the multi-frequency RCS method by considering comparison of
~ measurements and stored library elements not only directly in the frequency domain
but also in the time domain through preprocessing using the inverse discrete Fourier
transform. Classification in the frequency domain uses a nearest neighbor decision
rule. Time domain classification is performed by maximizing the correlation between
observed and prestored data. In either case, the orientation that resulted in the

observations is assumed known. Experimental results are shown for data collected on
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models of five ships and four aircraft for each of three different target orientations. The
time domain classification scheme is shown to be superior in terms of misclassification

percentage unless the number of frequencies used is extremely low.

The Extinction Pulse Technique

Rothwell and Chen [66, 18, 63, 19] extend the work of Moffat. They conclude that if
the target impulse response could in fact be characterized by a few natural resonances,
then an “extinction pulse” could be synthesized such that the late-time response of
the target to this pulse would ideally be zero. The late-time response is defined as the’
“free-ringing” response after the transmitted signal traverses the target. Illuminating
a target with the extinction pulse of a different target reveals the discrepancy through
significant energy in the late-time. The identification system as actually irnplémented
stores a version of the extinction pulse for each object of interest and convolves each
of these with the response of an unknown target to an arbitrary signal. As with
Moffat’s work, the assumption here is that the resonances are independent of target

orientation.

Citing insufficient robustness of Prony’s method with respect to noise and
assumed model order, two new methods are provided for determining the resonances.
The first involves direct minimization via Newton’s method of the convolution of an
observed response with the extinction pulses corresponding to different resonances.
The second is a direct solution for the resonance frequencies using the method of

moments.

Experimental results are given in which thin cylinders of differing lengths and
four simple aircraft models are discriminated using this technique. The authors claim
that other experiments in which aircraft models are illuminated at a variety of ori-
entations demonstrate the aspect independence of the extinction pulse, but these
results are not published. The primary drawbacks of this technique, as reported
by Borden [12], are that the energy in the late-time response is small, so that high
signal-to-noise ratios are required for successful recognition, and not all resonances
are excited at all target orientations, so the technique is not truly independent of

orientation.
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Transient Polarization Response

Chamberlain, [16] draws from the work of both Copeland and Ksienski in his de-
velopment of the transient polarization response (TPR) as a signal appropriate for
target discrimination. Noting the connection between the polarization response of an
object and its shape, Chamberlain sees polarization information as crucial to identifi-
- cation. In particular, the TPR is defined as the horizontally and vertically polarized
responses to a circularly polarized transmitted signal. This response is assumed to
be dominated by a small number of scattering centers, for which the polarization el-
lipses can be extracted directly from the TPR. Rather than observe the time domain
response directly, the TPR is computed via the inverse fast Fourier transform from
a series of multi-frequency RCS measurements for wavelengths in the range first pro-
posed by Ksienski. The ellipticity, tilt angle and amplitude of each polarization ellipse
are collected as an aspect-dependent feature vector for the target. Identification is
performed by comparing observed and prestored feature vectors using four different
distance metrics. Simulation results are presented for the discrimination of five scale
models of commercial aircraft (Concorde, DC-10, 707, 727, 747) using the TPR when
the target orientation is known. The authors claim that satiéfactory rates of correct
classification are achieved for all four distance metrics and for all signal-to-noise ratios

above 0 dB, although this is not obvious from their published results.

Steedly [79] extends this concept by estimating the dominant scattering centers
parametrically using Prony’s method and backward linear prediction, rather than di-
rectly via the IFFT. This technique is applied to compact radar range measurements
made on the same aircraft models used by Chamberlain. Success in estimating the po-
larization properties of scattering centers is demonstrated, but no attempt is made at
direct comparison with Chamberlain’s results nor at using the estimated parameters

for identification.

Silverstein [71] also uses Prony’s method to estimate polarization parameters
for the target. Citing that this method is susceptible to production of false scatteririg
centers, the identification algorithm allows for two or more scattering centers to be
combined when comparing observed data to stored templates. The remaining scat-
tering centers are associated with one another or with nil structures to find the best
match between observation and template. A distance measure is defined which takes
these effects into account. Simulation results are presented for the same five aircraft
models used by Chamberlain and Steedly. Unlike Chamberlain’s results, significant
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difficulty is encountered in classifying one of the five targets for sufficiently high noise

levels.

2.1.3 Summary
Two common elements of all of the above conventional methods are apparent:

o They are not based on Bayesian estimation via a statistical model for the re-

ceived data.

o They do not view the target as a dynamically changing object whose orientation
must be tracked in order for recognition to be achieved. As such, they do not

propose joint or concurrent estimation of orientation and target type.

In the following three sections we examine a number of efforts that make advance-

ments on one or both of these topics.

2.2 Bayesian Inference for ATR

In this section, we consider several references in which the recognition problem is cast
as a problem of Bayesian inference from range-profile data. While the problem of
recognition from radar data has a long history, we have found relatively few examples
in which the problem is addressed in a Bayesian framework, and even fewer in which
the resulting algorithms are tested using realistic target models. All such efforts we

are aware of are listed here.

2.2.1 Sequential Hypothesis Testing

The first treatment of the Automatic Target Recognition problem that we have found
in which radar measurements are modeled as a sample waveform from a random
process is provided by Therrien [84]. He applies sequential hypothesis testiﬂg to the
binary classification problem and shows that the resulting algorithm is in fact a two
stage process of linear prediction of a future observation and classification based on
comparison of the resulting residual sequences. While all of the essential elements
of the classifier are described, no attempt is made toward implementation on real or
simulated data. '

Jouny [37] extends this idea to the M-ary case. Additionally, the target classes
are each divided into subclasses corresponding to a sampling of the possible target
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orientations in ten degree intervals. Jouny describes four suboptimal sequential tests
whose complexity is lower than the optimal sequential test. The resulting classifiers
are tested using four-frequency backscatter measurements of the five commercial air-
craft models also used by Chamberlain, Steedly, and Silverstein. Results showing
performance of the four algorithms as a function of noise level are given. While the
use of subclasses corresponding to different target orientations implies that estimates
of the target orientation are in fact generated by this procedure, no results are pre-

sented with respect to the accuracy of the resulting orientation estimates, or of the

effect of the coarse sampling in orientation angle.

2.2.2 MAP Estimation for ATR

Smith 73] provides a Bayesian treatment of the ATR problem, in which the target
is hypothesized to belong to one of several known classes, and radar data are mod-
eled as random. Identification is performed by selecting the hypothesis which has
the highest probability of being true, conditioned jointly on the received data and
any prior information. For the case where the received data are the sum of a de-
terministic, aspect-dependent radar reflection and a sample waveform from a white
Gaussian random process, the equation for the maximum a posteriori classifier is
derived. Implementation of this equation requires knowledge of the deterministic re-
flection portion of the received data for each possible target; the observed data enters
_the estimator through an inner product with each of these deterministic signals. This
in turn requires that the orientation of the target during observation be known or
estimated. Smith goes on to discuss the issue of developing a library of radar reflec-
tions and a scattering center representation for the data. No implementation of the

resulting classification algorithm is reported.

2.2.3 Hidden Markov Models

DeWitt [24] investigates the use of Hidden Markov Models in classification of targets
from synthesized range-profiles. Prony model parameters are estimated from these
data using backward linear prediction and the singular value decomposition. For each
target of interest, a Hidden Markov Model is trained to range-profile features corre-
sponding to a 10° x 10° sector in aspect angle. Adjustment of HMM parameters in
response to training data is performed via the Baum-Welch re-estimation procedure.
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Classification is performed by computing the probability of each HMM having pro-
duced an observed range-profile feature vector, and selecting the target whose HMM
probability is highest. Orientation estimates obtained from a tracking system are
used to select the appropriate HMM for each target. The resulting system, once all
of the HMM’s have been sufficiently trained, is capable of classifying a target based
on a single observed range-profile. This system is augmented with additional HMM’s
which are trained to characterize the temporal relationships between range-profiles.
Simulation studies are performed to compare the classification performance of the var-
ious HMM configurations with each other and with a K-nearest neighbor algorithm.
The single range-profile classifier is seen to outperform the KNN algorithm. DeWitt
expects better performance from systems including inter-range-profile relationships,
but the published experiments show the opposite to be the case. While the precise
reason for this negative result is not clear, it is noteworthy that the attempt made
to exploit the temporal relationships between observations are in no way based on a

dynamical model for the object motion.

2.2.4 The Adaptive Gaussian Classifier

The Adaptive Gaussian Classifier or AGC is a system developed by Hughes Air-
craft Corporation for recognition of non-cooperative targets from HRR range-proﬁlés
currently under study by the Air Force Wright Laboratory. Much of the literature
concerning this algorithm is of a classified nature, thereby complicating the evalua-
tion of this tool for comparison with other methods. However, two overviews of this
algorithm are provided by Eisenbies [26] and Mitchell [51] that describe the essential
components including the cost function. From these descriptions, it is learned that
the term “Gaussian” refers to the computation of the Gaussian log-likelihood function
for identification purposes, and that the term “Adaptive” refers to the energy nor-
malization and range-alignment procedures applied to incoming range-profiles prior
to classification.

The AGC algorithm consists of several consecutively-applied operations that
may be grouped into two categories under the general headings of pre-processing and
classification. The pre-processing steps are as follows, and are applied in the order
listed: -

1. computing the magnitude of the complex data in each range bin,

2. downsampling,
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3. coarse range-alignment using the circular centroid,
4. normalization to unit signal energy, and

5. power transformation.

The power transformation step is defined by [26, 51.]
dfi] = (c[])*4, (2.1)

where c[t] is the return in range bin ¢ after energy normalization and d[i] is the
same return after the power transformation. The rationale here is that the processed
range-profiles are assumed to be distributed according to a Rician probability den-
sity function, and that the transformation of equation (2.1) “make[s] the underlying
UHRR radar pdf more closely appear Gaussian,” [26] so as to validate the use of the
Gaussian log-likelihood.

The classification of range-profiles is performed by comparison with templates
developed for each target class. Each template consists of a mean value 4[] and a
variance &2[i] of the returns in each range bin 7 that are computed from training
data. Note that the variance computation implicitly assumes that returns from dif-
ferent range bins are uncorrelated. While Eisenbies does not directly comment on the
need to characterize the range-profile dependence on target aspect angle, it is-known
from other correspondence [1] that templates are developed over 5° x 5° patches in
azimuth and elevation angles for each target. Also, the AGC does not estimate tar-
get orientation from the observed range-profiles, even though the available templates
might allow for such estimation. It is assumed that orientation estimates are provided
by an external system.

Once the templates have been developed, pre-processed range-profiles are clas-

sified by comparison with each template. This consists of two steps:

1. fine range-alignment by applying circular shifts to the received range-profile

until the Euclidean distance to the mean template is minimized, and

2. computation of the Gaussian likelihood energy given by
n|Z| + (z - 27z - &), (2.2)

where z is the received range-profile and ¥ is the diagonal covariance matrix

‘whose non-zero entries are 62[i).




The template that minimizes the likelihood energy is selected as the target type
estimate for range-profile z. Eisenbies goes on to test the performance of the AGC in
a controlled experiment, with the result that the AGC yielded performance slightly

inferior to that of k-nearest neighbor and neural network classifiers.

2.3 Orthogonal Subspace Projections

In a variety of inference problems, it is often desired to estimate a small number of pa-
rameters from observations that take their value in a space of high dimension. In some
cases, the data vectors for all possible values of the parameter lie in a low-dimensional
subspace of the original data space. In such cases, it can be very advantageous to de-
termine a projection from the data space to the low-dimensional subspace, and solve
the inference problem using the projected data. In this section we consider efforts
toward applying such techniques to the recognition problem. Significant progress has
been made toward the recognition of faces in images using these techniques, so we

begin by examining these efforts.

2.3.1 Eigenfaces and Fisherfaces

Recent efforts toward systems for .recognition of faces in images include work by
Belhumeur and colleagues [7, 8, 32] and Hallinan [33], in which a low-dimensional
representation is sought for the set of images of a face or other object for varying
illumination conditions. The rationale for this work is developed in [8], where it is
demonstrated that the set of images of a face for all possible light source directions and
intensities forms a 3-D linear subspace of the image space. An orthogonal basis for
the linear subspace is found by computing the eigenbasis for a selected set of images
under differing illuminations. The resulting basis vectors are themselves images and
are referred to as eigenfaces. The principal eigenfaces can then be used to construct
an image of the same face under arbitrary lighting conditions [8, 33] or, given a
novel image of the same face, determine the lighting conditions under which it was
produced [33]. |

The eigenface methods in [8, 33, 32] consider variation in lighting only; it is
assumed that the images used have been controlled for other factors such as facial
expression, translation, scale, and pose. By contrast, in [7] it is assumed that vari-

ation in facial expression produces a small deviation in the resulting images from
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the linear subspace, such that linear projection into an orthogonal basis can be used
for recognition of faces that is invariant both to lighting and expression. A single
basis is computed for the set of face images over several individuals, and the image
of an unknown face to be recognized is projected along the basis vectors. Recog-
nition is performed by computing the distance in the projected feature space from
the unknown face to each of the subspaces for the different individuals. The nearest
subspace is chosen as the identity of the unknown face.

Given this method, it is demonstrated that the eigenfaces computed in [8,
32, 33] are not the best basis for recognition. Because a single basis is computed
across all individuals, the principle components of the eigenbasis will contain the
maximal variation in all parameters, including the lighting and expression to which
the recognition system should be invariant. Belhumeur [7] proposes the use of a basis
computed using Fisher’s Linear Discriminant for recognition. This basis is chosen
so as -to maximize the ratio of the variation between individuals to the variation
for each individual in the projected feature space. The resulting basis vectors are
termed Fisherfaces. Results are presented that demonstrate superior performance for
the Fisherface method over that of the eigenface method for lighting and expression
invariant recognition. | ‘

It is important to note that the recognition systend described above makes no
attempt to deal with variation in pose. In [32], a system is described for tracking the
region in an image containing a face when the face undergoes translation and rotation
in the image plane, but none of these efforts consider extending orthogonal subspace
methods to the case of general pose variation. The next subsection describes two

recognition methods that attempt to account for such variation.

2.3.2 Eigenspace Methods for Pose Estimation

Murase and Nayar [55] consider the problem of joint recognition and 'pose estimation
of simple objects from images. Images are obtained from several objects for a discrete
sampling of the possible poses; each image is normalized in scale and brightness.
The resulting images are used to compute a single “universal” [55] eigenbasis for
the images of all objects at all poses. In the absence of highly specular objects,
the authors reason that the object image will change smoothly with varying pose,
and therefore that the projections of these images into the eigenspace will change

smoothly as well. Thus, the set of images for an object at all possible orientations,
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when projected into the eigenspace, will form a smoothly varying manifold. If the
pose is described by a single orientation angle such as azimuth, then the manifold is
a closed curve. The set of images for each object form a separate closed curve in the
universal eigenspace. Recognition of a novel image is performed by projecting into
the eigenspace and locating the object whose manifold is nearest the projected novel
image. The location of the point on the selected manifold nearest the projected novel
image determines the pose of the object in the image. Alternatively, once an object
has been recognized, an individual eigenbasis is computed using the images from
that object only, and pose estimation is performed in the object-specific eigenspace.
Experiments are conducted for four-class and twenty-class recognition, with very good
results in terms of recognition rate and pose error, given that a sufficient number of
images are used to construct the bases.

Pentland, et al. [63] take a different approach to pose estimation. Rather than
compute a universal eigenbasis for all objects at all poses or an individual eigenbasis
for each object at all poses, the authors propose computing an eigenbasis across all
objects at each of a discrete set of pose angles. This is performed in the context of
face recognition using a database of face images of 21 people at nine discrete poses.
In this formulation, pose estimation is performed first by computing the residual
description error for a given image in the eigenspace for each pose. Recognition
follows by finding the individual whose image is closest to the given image in the
eigenspace for the selected pose. Results given indicate slightly better performance
for this technique than for the universal eigenbasis, but these results are difficult to

interpret due to the the very coarse sampling in pose.

2.3.3 Classification of Commercial Aircraft

An application of orthogonal subspace projection methods to recognition of aircraft
from range-profile data is presented by Zyweck [90, 91, 92]. In this work, range-
profiles were collected from several aircraft as they took off from Adelaide Airport in
Australia. Each aircraft was either a Boeing 727 or a Bdeing 737, and range-profiles
were collected over a 50 degrée sweep in aspect angle.

The authors apply a number of preprocessing steps to the range-profiles prior
to classification:

e computation of the magnitude of the return in each range bin,

e alignment of the range-profiles by correlation,
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e averaging of 30 consecutive range-profiles to improve the signal-to-noise ratio,

e estimation of the noise level and subtraction of this value from each range bin,

and

e computation of the magnitude of the Discrete Fourier Transform of the pro-

cessed range-profiles.

The resulting preprocessed data are referred to as feature vectors. These are divided
into training and testing sets. All of the feature vectors in the training set for a
particular aircraft at all aspect angles are collected together and are used to compute
an orthogonal basis using Fisher’s Linear Discriminant. Because there are only two
classes of aircraft, there is only a single basis vector, and the projection of a feature
vector produces a scalar. Each of the feature vectors in the training set for a particular
aircraft are projected into the orthogonal subspace, producing a set of scalars for each
class. The mean and variance in each class are computed.

Recognition of a feature vector from the testing data set is performed by first
projecting it into the orthogonal subspace. The resulting scalar is modeled as a
Gaussian random variable, -with mean and variance given by the class mean and
variance computed from the training data. Classification of the projected feature-
is performed by a likelihood ratio test. The results of their test indicate a 96%
rate of correct recognition was achieved for this two-class prbblem. This result is
significant because a high rate of recognition was achieved using actual radar data
and a very simple recognition algorithm. Furthermore, the algorithm achieved correct
recognition for variations in aspect angle of 50 degrees. The authors indicate that
a possible reason for their success lies in the different engine positions for the 727 -
and 737 aircraft. The engines are clearly visible to the radar over the range of aspect
angles considered and are major scatterers, thus rendering the observed range-profiles
significantly different for the two aircraft. It is difficult to say whether the techniques
employed here would also be successful when attempting to distinguish a greater

number of targets over a broader range of aspect angles.

2.4 Joint Tracking and Recognition

As discussed in Chapter 1, the problem of recognition of targets from sensor data

is best solved by jointly estimating the position, orientation and target type from
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the available data. In contrast, the vast majority of approaches to the recognition
problem in the radar context assume that the orientation of the object is known, and
ignore the problem of how orientation estimates might be obtained from the radar
data. This section identifies those few efforts in which the authors recognize the

advantages of jointly estimating the pertinent target parameters.

2.4.1 Joint Position and Orientation Estimation

Early work by Kendrick [39] and later advancements by Andrisani [3] and Sworder [82]
seek to improve the accuracy of Kalman filter-based tracking algorithms by incorpo-
rating an estimate of one or more orientation angles derived from image data of the
target. The relation between the position and orientation of an aircraft is nonlinear,
but this relationship is apparently well behaved enough that the process of forward
prediction and residual analysis is of significant utility in orientation-enhanced track-
ing. All three studies indicate superior performance of these tracking systems over
traditional trackers which do not estimate orientation. Although none of these works
considers identification directly, they represent important advancements of the view
that the process of extracting information from a target using radar reflections is
best performed by estimating all target paramefers of interest, and that this can be
achieved by processing data received from multiple sensors. A more detailed review
of these works is provided by Libby [45].

2.4.2 Joint Tracking and Recognition by Sequence Compar-
ison Methods

Libby [45, 44] provides a detailed comparison of six algorithms for orientation esti-
mation and target identification within a general dynamic programming structure. A
particular aircraft model is chosen, along with a maneuver which this hypothetical
target will execute; the maneuver consists of true position and orientation states of
the target over time. The sequence of orientation states is used to select a series of
HRR signatures from a library of simulated returns for each potential aircraft on a
discrete grid in orientation space. Next, range, range rate and pointing angle mea-
surements are provided to a Kalman filter-based tracking algorithm; This algorithm
provides estimates of the complete kinematic state of the target over time, including
estimates of the orientation, which define an expected path for the target through
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orientation space, and bounds on orientation errors, which are used to define windows
around each estimate in which the true orientation is assumed to lie.

At this point, dynamic programming is applied to estimate the sequence of
orientations corresponding to the sequence of observed HRR signatures. For each
time step, the two most recent observations are matched to library elements drawn
from the associated orientation windows to provide an estimate of a single transition
in the orientation path. These transitions are connected to provide an estimated
orientation sequence and the process is repeated for each potential target. The six

algorithms considered are as follows:

o a Perfect Knowledge of Aspect algorithm in which library elements for each
potential target are extracted for the true orientation sequence and compared
with observations to compute the likelihood of each target having produced the

observations;

e an Independent Look algorithm which finds the best match between each obser-
vation and the library elements from the associated orientation window without

regard to the resulting path in orientation space;

e a Fixed Bound algorithm in which the only restriction on successive orientation

estimates is that the change is bounded;

e an algorithm based on the work of Larson and Peschon in which the event
of the target being in a particular orientation state at any time is assigned a
probability conditioned on the previous orientation state, the entire history of

kinematic measurements, and the target type;

e a pair of algorithms based on Dynamic Time Warping in one and two dimen-
sions, respectively, in which transitions in orientation space are restricted to

neighboring elements.

A number of experiments are reported where likelihoods of the true target
and a different target having produced the observed sequence of measurements are
computed. Libby seeks to analyze the performance of the classification algorithms
in terms of generalized ambiguity functions. To accomplish this, he defines pseudo-
targets lying between the two actual targets through the use of a morphing algorithm

with various morphing fractions. The curvature of the resulting functions of likelihood
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versus morphing fraction in the vicinity of the truth is qualitatively related to the
notion of a Cramer-Rao Lower Bound on classification performance.

The results of these experiments show that, of those algorithms that were not
provided with the true aspect angle sequence, the Larson and Peschon algorithm ex-
hibited superior performance in terms of a lower computed likelihood for the incorrect
target model than that computed by other algorithms. An interesting observation
is that, for most of the cases considered, all six algorithms were able to correctly
classify the target from the sequence of observations. Only in the cases of scatterer-
augmented targets and high noise or the use of two target models which differed only
in the presence of armaments under the wings did any of the six algorithms make an

incorrect classification.

2.5 Other Methods Using Radar Data

The problem of recognition using radar has a long history in the literature, and a wide
variety of methods have been proposed. To complete the review of ATR methods using
range-profile data, this section outlines two efforts, one using correlation filters and
another using wavelet representations, that would not be properly placed under the
headings of previous sections. We conclude by presenting two examples in which the
modulation introduced to the reflected signal by the propulsion system of an aircraft

is used in identification.

2.5.1 Recognition Using Correlation Filters

Hudson [34] considers the use of a bank of correlation filters for recognition of aircraft.
Normalized range-profiles for a number of aircraft are divided into groups, where each
group contains the data for a particular aircraft over a 20 degree sweep in aspect angle.
Each group of range-profiles is used to determine a vector of filter coefficients that
maximizes the correlation peak between the filter vector and the range-profiles under
all possible circular shifts of the range-profiles. This produces a correlation filter
tuned to each target over a 20 degree window in aspect angle.

The resulting filter bank is tested using a database of real range-profiles col-
lected from 24 different aircraft types in flight. Normalized range-profiles are divided
into training .and testing subsets. The training set is used to compute the filter co-

efficients, and the testing set are used to test the recognition performance of the
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resulting filter bank. In the original test, an overall rate of correct recognition of 57%
was achieved. This rate was deemed to be unacceptably low for practical use. The
authors proceed to demonstrate that higher rates of recognition are achievable when
the aspect angle is assumed known (79%), or when a recognition is performed using
each of a sequence of eight observed range-profiles and the final estimate of target
type for the sequence is determined by majority vote (84%). The authors do not

comment on the use of the correlation filters to estimate the target aspect.

2.5.2 Recognition Using Wavelet Representations

Baras [5] develops efficient databases of high resolution radar data for use in ATR
through the application of wavelet representations. Range-profiles for two ship tar-
gets simulated using a software package developed by the Naval Research Laboratory
are used in the development and testing of the algorithm. The simulations are per-
formed for aspect angles between 0 and 360 degrees in 0.5 degree increments. All
of the range-profiles for both targets are processed using a wavelet multiresolution
analysis to produce approximations to the data at four different scales, the finest scale
corresponding to the original range-profiles. o _

The data for one of the ships at the coarsest scale are then grouped into cells
in aspect angle over which the coarse-scale data are relatively invariant. A cell is
defined as the range in aspect angle over which the mean squared distance between
data vectors in the cell remains below a threshold. The coarse-scale cell having the
largest mean-square distance is then subdivided into smaller cells, and the size of
the sub-cells is determined using the mean-square distance between data vectors at
the next finer scale. This process is repeated until the reduction in distortion by
subdividing a given cell falls below a predetermined threshold. The result is a tree
structure in which the leaf nodes represent regions in aspect angle over which the data
vectors at a particular scale are consistent with respect to the mean-square distance
metric. This tree is known as an aspect graph.

Recognition is performed using the resulting aspect graphs. A received range-
profile is preprocessed using wavelet analysis as described earlier. The resulting data
vectors are input to the aspect graph. At each node, the distances between the
sensor data and the data for each node at the next lower level are computed, and the
sub-node corresponding to the smallest distance is selected. This is repeated until a

leaf node is reached, at which time a classification is assigned according to the label
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assigned to the leaf node. The authors investigate two methods for implementing
this structure, one in which a single aspect graph is developed from the data for both
ships, and another in which separate aspect graphs are developed for each ship. Not
surprisingly, the method using separate aspect graphs for each ship achieved a higher
recognition rate (85%) than did the method using a single aspect graph (75%). This
effort is ifnportant because is provides a technique for nonuniform sampling of the
possible aspect angles, where the sampling is driven by the variability in the data. It
is interesting to note that while the algorithm simultaneously provides estimates of
the target type and aspect angle, no results are reported with respect to the accuracy

of aspect angle estimates obtained.

2.5.3 Modulation by Propulsion Substructure

Bell [9] describes a system in which distortion of the radar reflection by an aircraft’s
propulsion system is treated as target-specific information to be used in identification.
- The periodic rotation of jet engines is modeled as introducing periodic amplitude
and phase modulation to the received waveform at integer multiples of the rotation
frequency. This distortion of the received signal is known as jet engine modulation or
JEM. Fourier representations of the modulation functions are estimated by locating
peaks in the periodogram spectra and cepstra of radar reflections. An example is
shown where the number of blades on a dual propeller aircraft is derived from the
harmonic relationship between the periodogram peaks, but no results are shown where
this technique is used for identification.

Bullard [15] proposes Doppler processing of radar returns from a helicopter
target to estimate parameters of the rotor structure which are indicative of the type
of helicopter in question. Responses from rotors are assumed to lie in regions in the
frequency domain distinct from responses from other parts of the aircraft, allowing
selection of the rotor responses by simple filtering. The time delay between peaks in
the rotor response is used to estimate the rotation rate. It is claimed that many other
rotor para.méters can be extracted using similar processing, but details are not given.
No identification studies are reported. _

Work on JEM is ongoing. The general result is that JEM information is useful
for recognition, but requires long dwell times to acquire, and may be impossible to
measure if the orientation is such that the target’s propulsion system is not directly

illuminated.
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2.6 Radar Reflectivity Models

As discussed in Chapter 1, recognition of targets from their radar reflections requires
mathematical models that accurately characterize the data expected from a given
target at a given orientation. The process by which radar signals reflect off a com-
plex surface to produce an echo signal can be modeled in a variety of ways. The
most general model for this phenomenon would consider the complete interaction of
electromagnetic radiation with the target, including reflected and absorbed waves,
induced surface currents and propagation effects. The complicated nature of such a
model would require a prohibitive amount of computation to understand the behav-
ior of radar reflections for all but the simplest of targets. As a result, most practical
models of radar reflectivity are simplified to accommodate the needs of the modeler

(e.g. simulation). This section provides a brief list of several representative models.

2.6.1 One-Dimensional Models

This section describes two approaches to modeling the range-profile as the summed
contribution of a small number of scattering centers. I have referred to these models
as one-dimensional because the dependence of the return from any scattering center
on position is only in terms of the range coordinate. These models are generally
used to achieve a dimensional reduction in existing range-profile data, and cannot be

used to compute the range-profile from, for example, a 3-D description of the target

geometry.

Impulse Train

The simplest model for HRR data is provided by Smith [73]. Drawing on the widely
held view that the structure of a range-profile for a particular target is dominated by
the contributions of a small number of scattering centers, Smith models each of these

using a scaled impulse function,

m .
r(t) =) At —1). (2.3)

I=1
Thus, each scatterer is parameterized only by its range and amplitude. Smith points
out that a scattering center does not necessarily correspond to an actual physical

structure on the target, and that the modeling of scatterers as impulses may preclude




the use of this technique in describing returns from cavities and ducts. A single
example is reported in which a range-profile is computed from a facet model for the
Lockheed SR-71 using an unspecified simulator, and the parameters corresponding
to 26 scattering centers are estimated. These parameters are used to reconstruct an
estimated range-profile which appears very similar to the original data, although no

quantitative analysis is provided.

Prony Model

A widely used scattering center model for range-profiles which includes polarization
effects is known as Prony’s model and is described by Steedly [79]. In this case,
the horizontally and vertically polarized responses to a left-circularly polarized trans-
mission are characterized as being dominated by the contributions of M scattering

tenters, each of which constitutes a pole of the model:

[ sui(fa) :l — f [ Ghk Jpz’ n=1,...,N. (2.4)

svl(fn) k=1 | Quk

The phase of each p; is proportional to the range of the associated scattering center,
and the complex coefficients ar and a,x describe the polarization properties. These
properties are commonly described in terms of a polarization ellipse for each scatterer,
which is in turn parametrized by its amplitude, ellipticity and tilt angle. ~ Steedly
proposes estimation of these parameters using linear prediction and least squares,
and applies this technique to data collected from scaled aircraft models in a compact
radar range. Unlike Smith, Steedly makes a strong connection between the estimated
scattering centers and physical structures on the target; accurate estimation of the
range and polarization parameters for each scatterer is used to validate the model

and estimation procedure.

2.6.2 Three-Dimensional Models

Two efforts are presented in which the range-profile is modeled as a deterministic
quantity, and algorithms have been developed for computation of the range-profile
from a 3-D characterization of the target shape. These models can be used to un-
derstand the variation in the range-profile with orientation. Simulated range-profiles
are computed for a discrete set of orientations, and appropriate distance metrics or

statistical measures are computed between pairs of range profiles.
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Single Reflection with Shading

Du [25] describes a system for range-profile prediction for a target whose surface is
constructed of quadrilateral patches. As this effort was intended to be of use to the
HRR group at Rome Laboratory, the system is designed to simulate the output of
existing radar hardware, which is the convolution of the actual range-profile with the
product of a transmitted chirp waveform and a sinc function.

The process of range-profile prediction proceeds in two stages. First, for a
particular target and orientation, a shading mask is computed which consists of those
patches that are directly illuminated by the radar system. Illuminated patches are
subdivided into four corners and the return in each range bin is the summed contri-
bution of all patch corners in the bin. The return from each corner is the product of
a random phase factor and reflection factor which is an appropriately chosen function
of the corner area and the observation angle. The particular function chosen for use
in the simulator is the antenna pattern of an appropriately sized and oriented circular
aperture: ‘ o

oAl o3
where £ is the angle between the radar line-of-sight and the corner normal vector,
A is the area both of the corner and the associated circular aperture, and r is the

aperture radius. Du goes on to describe several other possible choices for this function.
Computer code which implements the algorithm is provided and several issues relating

to implementation are discussed.

XPATCH

XPATCH is a set of four computer programs used to simulate the radar return of a
target [2]. A set of parallel rays are directed toward a faceted model of the target,
and traced as they bounce off the various surfaces. Those rays which are eventually
directed back toward the source contribute to the return. This shooting and bouncing
ray technique accounts both for shading and multiple bounce effects. The output of
the XPATCH programs is either radar cross section as a function of aspect angle, the
range-profile for a particular aspect angle, or an ISAR image. For the range-profile
case, the return is computed for each of the four combinations of linear transmit

and receive polarizations. A more complete description of XPATCH is provided in
Chapter 3.
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2.6.3 Stochastic Models

The following efforts model the interaction of electromagnetic radiation with the
target as the realization of a random process. One model has been analyzed to yield

the expected variation of the complete return from the target with orientation.

The WSSUS Model

Van Trees [87] presents a statistical model for the reflectivity of a doubly-spread radar
target whose surface is rough on the scale of the wavelength of the transmitted signal,
and is rotating about a point on the radar line-of-sight. The reflectivity of the target is
denoted by b(t,7), and is modeled as a zero-mean complex Gaussian random process.
Furthermore, it is assumed that the reflectivities at different delays 7 are statistically
uncorrelated, and that for a fixed delay 7 the reflectivity is wide-sense stationary in
time. A derivation of the WSSUS model is presented in Chapter 3.

Conditionally Gaussian Model

In this model, the received data are modeled as the sum of a signal term and white
Gaussian noise. The signal term is modeled as a random process that is conditionally
Gaussian given the target type and orientation. A derivation of this model and a
number of results with respect to its use in recognition are presented in Chapter 3.
As described earlier, the Adaptive Gaussian Classifier models the processed radar
data as conditionally Gaussian, in the sense that classification is performed using the

Gaussian log-likelihood function.

Laser Radar Model

Shapiro [68, 69, 70] considers illumination of a target by the focused beam .of a
coherent laser radar. The beam radius is assumed to be small on the scale of the target
-and an image is formed by making separate measurements of the target reflectivity
for different transmitter aim points. High resolution range determination for each
aim point allows for a partial 3-D characterization of the target.

" Under the conditions of a stationary unresolved target and a monostatic radar
system, the complex envelopes of the incident and reflected fields E; and E, are
related through a multiplicative target model

E.(7.1) = T(G)E(7,1), (2.6)
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where 7 is the transmitter aim point in the image plane and T(p) is the associated
complex-field reflection coefficient. This quantity is decomposed into a deterministic
component T,(7) which models the target as a specular reflector such as a polished

surface and a random component T(p) which characterizes the effect of the roughness

of the target surface
T(p) = T,(p)e”’ + To(p)- (2.7)

The glint component T,(p) is considered to have a very narrow angular extent like
that of a mirror, but any appropriate reflection pattern could be substituted for this
term. The phase angle § is modeled as a uniform random variable on [0,2%]. The

speckle component T(p) is a complex-valued 0-mean Gaussian random process with

autocorrelation function

E {Ts(-p-l)Ts(ﬁZ)} = 0? (28)

E{T.0)Ti(7)} = X360, — 7). (2.9)

Shapiro proceeds to provide a characterization of the directional properties
of the speckle component [70]. In this case, T4(p) is ignored and the multiplicative
model is expressly parameterized in terms of the position and orientation of the target

T(p) = T, [To(p—7.)] ex0 [i268" (5 -7,  (210)

where p, is a target translation vector, U is a matrix describing target rotation in the
plane of illumination and ¥ is a vector describing the tilt of the target with respect
to the plane of illumination. Note that object tilt is equivalent to a change in aspect

angle. The complex amplitude of the return due to illumination by a monochromatic

beam of spatial pattern £.(p) is given by

y= [T ) i (2.11)

The variation in target reflectivity is investigated by computing the correlation
coefficient ;2 of the random variables |y;|? and |y2|?, where the subscripts denote
different choices of the parameters {,,Us,¥}. If T(p) is modeled as a complex

Gaussian random process, then we have

_ |E{ny3} P
"2 = F{5:F E {yaF] (2.12)
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Speckle decorrelation is said to occur when the measurement parameters for the two

2

different observations are such that v, < e™%. For the specific case of object tilt

b, — = A%, decorrelation occurs for

AT] >~ (2.13)

= VAL? + k%t

where a is the transmitted beam radius, L 1s the distance to the target and k is the
wave number of the illumination. When only tilt is varied, the decorrelation limit is
approximately 2/ka for near-field illumination and a/L for far-field illumination. If
- multiple parameters are allowed to vary, the decorrelation limit is 2/ka, regardless of
the value of L.

Shapiro’s model has yielded a measure of the expected variation in the reflec-
tivity of a target for small changes in orientation, when the signal-target interaction
can be modeled as taking place in a plane. In order to more directly relate this result
to the case of an extended target on which all points are simultaneously illuminated
by a wide radar beam, we will model the beam pattern {;(p) with a constant value
of £ over the entire image plane. If we additionally ignore translation and in-plane

rotation, then we have

E{yy3} = 3%¢* / dpT, (p)e?2K =977, (2.14)

2.7 ConcluSions

In this chapter, we have reviewed a wide variety of approaches to the problem of
recognition from radar data, and identified several models for high resolution radar
data that have been applied to the recognition problem. Of the models examined,
only the laser radar model described by Shapiro has been investigated to determine
the variation in the data for small changes in orientation. None have been analyzed
in terms of fundamental limits on the performance of algorithms for orientation esti-
" mation and recognition. We will further examine the modelling problem and analyze
two candidate models in Chapters 3 and 4. - _
Those algorithm for ATR that have been tested on real or simulated data from
realistic radar targets have met with varying degrees of success, but because of the
vast differences in the methods by which these algorithms were tested, it is difficult

to draw comparisons between them. However, it is important to note the distinctions
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between these efforts and the approach emploved in this thesis. Very few of the
efforts pose the recognition problem in a Bayesian framework. Of the various ATR
algorithms, only the Adaptive Gaussian Classifier makes use of a stochastic model
for the range-profile data. Only the effort by Libby attempts to jointly estimate the
target type and a sequence of target orientations from a sequence of observed range-
profiles, but this method does not relate the successive orientations assumed by the
target through a dynamical model for the target motion. In short, no previous effort

we have found incorporates all of the essential elements of the recognition algorithms

we describe in Chapter 5.
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Chapter 3

High Resolution Radar Models

Development of systems for recognition of aircraft and ground vehicles from high
resolution radar data is critically dependent on the use of appropriate models that
characterize the range-profiles expected from a given target at various orientations.
In this chapter we consider the HRR modeling problem. We begin by introducing the
reader to various basic concepts in high resolution radar, drawn largely from standard
textbooks [72, 88, 64, 87], including a definition of the basic unit of high resolution
radar data that will be used for recognition of targets, the fange-proﬁle. We go on
to consider two candidate models for the range-pfoﬁle, and conduct extensive tests
of the recognition performance under these models using simulated radar data. We
conclude by indicating additional work to be performed to further establish the utility

of models for high resolution radar data in performing recognition.

3.1 Basic Concepts in Radar Modeling

A fundamental concept associated with radar systems is that range is proportional
to delay. For example, the range to an object being illuminated by the radar is
proportional to the time delay between transmission of a radar pulse and reception
of the echo pulse. The range R is related to the delay 7 through [88] 4

rR=Z

R (3.1)

where c¢ is the velocity of propagation of the signal wavefront. As will be shown, the
equivalence of range and delay can be exploited both to determine the bulk range
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to a target, and to infer the distribution of target reflectivity as a function of range
along the radar line-of-sight.

A second important concept in radar is that the ratio of power in the received
echo to power in the transmitted pulse is proportional to a quantity called the radar
cross-section or RCS. This relationship is summarized in the radar range equation,
which states that for a target at range R, the transmitted power Pr and received

power Pg are related by [88]

1 1
- 9
Pr = PrGr (47.'R2) ? (4%32) Ar, (3.2)

where o is the radar cross-section of the target, G7 is the gain in the transmitter
antenna, Ap is the effective aperture area of the receive antenna, and the two factors
of (1/4x R?) describe the effect of the spreading of the signal wavefront as it travels
from the radar to the target and back. Thus, if the target is motionless, and if the

radar parameters Pr, G, and Ap are fixed, we have that
PR X 0. ’ j (33)

This provides a simple mechanism to measure the radar cross-section of the target.
Examination of equation (3.2) reveals that the radar cross-section is expressed in

units of square meters; this quantity can be thought of as the effective echoing area

of the target.

3.1.1 Point Targets

To begin the development of models for radar signals, consider the target to be a
zero-velocity isotropic point reflector. Such a target is considered to have negligible
size, such that the reflection of the impinging wavefront occurs instantaneously. Let
VErsr(t) and r(t) be the complex envelopes of the transmitted and received signals,
respectively. In this characterization, the transmitted signal has energy Er, and s7(t)
is assumed normalized to unit energy. Let T be the duration of the transmitted signal,

so that the transmitted power is given by

Pr=—, (3.4)
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and is expressed in units of Watts. Let the target be located at two-way delay 7 from
the radar transmitter and have reflectivity b. Then the received signal is modeled as

a scaled, delayed version of the transmitted signal, with additive noise [87],

r(t) = g(R)by/Ersz(t — 7) + w(?). | (3.5)

In this model, the reflectivity b includes only the effects of reflection by the target; if
b is deterministic, then its squared magnitude gives the radar cross-section in units

of square meters,

8° = 0. (3.6)

The factor g(R) includes all of the range attenuation and antenna effects,

(3.7)

and has units of meters™. The noise w(t) is a zero-mean complex white Gaussian

random process of intensity Ny Watts per Hertz.

In the absence of noise, Ny = 0, the received power in Watts is given by
1 4T .
H=T/ Ir(®)[2dt. (3.8)
For consistency with the radar range equation (3.2), we have
E
Pr = g*(R)[bl* = (3.9)

For situations where the target is small, or the radar bandwidth is low, this model
can be used to determine the bulk range to the target, or if the range is known, to

measure the radar cross-section o [72, 56).

It is typically the case that an object being illuminated by a radar is in motion.
If the point target is allowed to move with radial velocity v along the line-of-sight,
then the range R and delay 7 become functions of time, and this must be reflected
in the model. Let the transmitted pulse have bandwidth W. As shown in [87], if the

target velocity is small compared to c,

%«L (3.10)
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and the time-bandwidth product for the transmitted signal satisfies
WT < — | (3.11)
2’ : )

then the effect of the motion on the received signal is to introduce a Doppler shift to
the carrier frequency v., other effects being negligible. Thus, the complex envelope

of the received signal becomes
r(t) = g(R)by/ Ersr(t — 7)e/2™Pt 4 (), (3.12)
where
Vp =V, ('i) (313)

is the Doppler frequency.

3.1.2 Range Resolution and Range-Spread Targets

The range resolution of a radar system is defined by the ability to distinguish point
reflectors closely spaced in range. For a transmitted signal of bandwidth W, two

reflectors are distinguishable if they are separated in range by no less than [88]

c

AR= W.

(3.14)

High range resolution can be defined as the case where the target extent in the range

dimension, L, is much larger than the range resolution
L>AR. (3.15)

In this case the target is said to be range-spread or dispersive. If we continue to model
the target as a reflector, and if the target is motionless, then the received signal is
given by the superposition of reflections from all delays 7 over the target extent [87],

r(t) = g(R)\ Er /0 g b(r)sz(t — 7) dr + w(t) (3.16)

where b(7) is, in turn, the superposition of reflectivities for all points on the target at
delay 7. In (3.16), it is assumed that the bulk range to the target R is much larger
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Figure 3.1: Illustration of high resolution radar. The target is illuminated by a
short pulse sr(t). This signal is reflected by the target with reflectivity profile b(7)
to produce the received signal r(t) according to (3.16). The reflectivity b(7) is the
superposition of reflectivities of all points on the target at two-way delay 7, and is
dependent on the orientation of the target relative to the sensor.

than the target extent L, such that the factor g(R) is approximately constant with

respect to the integration.

The scenario for collection of high resolution radar data from a range-spread
target is illustrated in Figure 3.1. The target is illuminated by a short pulse sr(t).
This signal is reflected by the target with reflectivity profile (1) to produce the
received signal r(t) according to (3.16). Thus, for a range-spread target, the re-
ceived signal r(t) contains information about the distribution of target reflectivity
with range. It is assumed that the beamwidth of the transmitted signal is signifi-
cantly larger than the target size, and that the radar antenna is aimed at the target
so that the target lies within the main lobe of the antenna pattern. This scenario for
radar illumination is known as spotlight mode. Under these assumptions, the received
signal r(t) is invariant to small translations of the target in any direction normal to
the radar line-of-sight, i.e. translations in the cross-range dimension. However, r(t)

is clearly dependent on the target range, and also on physical factors such as



e the materials from which the target is constructed,
e the shape of the target, and

e the orientation of the target relative to the radar Sensor.

It is the last two of these items that we will exploit in using HRR data to identify
targets. _

- When collecting high resolution radar data according to the scenario described
above, it is important to note that there is typically some uncertainty in the measure-
ment of the bulk range to the target. As a result, it is customary to include a phase
factor e’®, where ¢ is a random variable, multiplying the signal term in the reflectivity
model (3.16). If the uncertainty in the bulk range is larger than a wavelength of the
transmitted signal, then ¢ is well modeled as uniform on the circle. There are various
ways to account for this random phase factor in our model, one of which would be to

include it in b(7).

3.1.3 Doubly-Spread Targets

Here we consider the case where a range-spread target is in motion. If the motion is
not strictly directed along the line-of-sight, then the orientation of the target relative
-to the radar will change as the target moves. Thus the reflectivity profile b will change -
with time. Let b(Z, ) represent the superposition of reflectivities for all points on the
target at delay 7 and for an illumination occurring at time ¢. Let the radar transmit
a pulse toward the target at time ¢ — 7. The signal arrives at a point on the target
with two-way delay 7 at time ¢t — 7/2. The combined reflectivity of all such points

is [87]
b (t - %, ’T') .
The reflected signal arrives at the radar at time ¢. In this case, the received signal is

given by [87]

()= 9(R)WEr /o < szt —7)b (t - gf) dr + w(t) (3.17)

For general target motion, there will be a component of the velocity that is
rotational about the target centroid. Points on the target at varying distances y from
the line-of-sight will have a radial component of their veloéity that is proportional to
~ y. Thus, the Doppler shift introduced to the reflected signal by a point at cross-range
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coordinate y will be proportional to y. It is this dependence that is exploited in radar
imaging applications such as SAR and ISAR. If b(t,7) is modeled as a deterministic

function of time and delay, then let ¢(v,7) be the Fourier transform of b(t,7) [74],
e(v,7) = / = bt r)ei*™ . (3.18)

The function ¢(v,7) is the superposition of reflectivities for all points on the tar-
get with range coordinate corresponding to delay 7 and with cross-range coordinate
corresponding to Doppler shift v. '

For distributed targets with many scatterers, it is often appropriate to model
the reflectivity b as a random process in time and delay. As described in (87], if
the target surface is rough compared to the wavelength at the carrier frequency,
then b(¢,7) may be modeled as a zero-mean complex Gaussian random process with

covariance function
E{b(t1,71)b"(t2,72)} = K(t1 — t2,11)6(11 — 72). (3.19)

The form of the right side of this equation arises from two assumptions made about

the reflectivity process:
o The reflectivities at different delays 7 are statistically independent, and
o The reflectivity at a fixed delay forms a wide-sense stationary random process.

These assumptions form the basis for the wide-sense stationary, uncorrelated scatter-
ers or WSSUS model for doubly-spread radar targets [87]. Assuming this model, let
S(v,T) be the Fourier transform of the covariance function K(t,7),

S(v,7) = / © K(t,7)e" 41, (3.20)

-00

This function is known as the scattering function for the target.

It is straightforward to show that, in the absence of noise, the radar cross-
section of a doubly-spread target is proportional to the integral of the scattering
function over the target extent in delay and Doppler. Let

r(t) = sr(t) + w(t) (3.21)
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so that sg(t) is the signal portion of the received waveform that results from reflection.

The expected received power is given by

E{Pr} = /E{[sR )P}t
= %gz R)/Tdt//E{b(t— g—,r)b(t - g—,a)}sr(tf 7)sr(t — o)drdo
= Prg*(R) / K(0,7) /T lsp(t — 7)[2dtdr
= Prg’(R) / / S(v,7)dvdr

Therefore, we have

fTiPR} //S v, T)dvdrT. (3.22)

Given this relationship, the RCS of a small patch on the target consisting of all
points with delay coordinate in [r,7 + A7) and Doppler coordinate in [v,v + Av) is
proportional to S(v, 7)AvAT [74].

3.1.4 The Range Profile

The basic unit of high resolution radar data that will be used for recognition of targets
is the range-profile. In this subsection, a derivation of the range-profile is presented
for the range-spread target model. The development presented is drawn largely from
the text by Rihaczek [64], with some notational changes for consistency with the
WSSUS model.

The derivation is begun by examining the signal term in equatlon (3.17). We
assume that the duration of the coherent target interaction as prescribed by this
equation is short enough that target motion during a single illumination is negligible.
This is equivalent to assuming that the target is unresolved in the Doppler coordinate.

In this case, equation (3.19) may be written
E{b(m1)b(12)} = K(n)6(11 — 72), (3.23)

where K(7) = E{|b(7)[?} is the range-scattering function for the target. Let v be
the bulk Doppler shift resultmg from the target radial velocity. In the absence of

noise, the received signal is

(RWEr / — )™ty dr. (3.24)
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Let 7o be the bulk delay to the target. The received éignal is passed through a
filter matched to the transmitted signal delayed by 7o and Doppler shifted by vo [64],

Up(t) = sp(t — mo)el? ™0l | (3.25)
The matched filter impulse response is given by

. L sp(—t — mo)eltmelit), (3.26)

BB ) = smyvE

Let n(t) be the output of the matched filter. Then we have

h(t) =

n(t) = /00 /oo s7(o = 7)™ sp(—t + 0 — 70)b(7)e* (=7t dr dg (3.27)

Making the substitution A = o — 7, the expression for the matched filter output

becomes
()= [ °° / T sr(A)sp(A =t + 7 — mo)b(r)eZ™EH O drdy.  (3.26)

Let the ambiguity function x(7,v) for the transmitted signal sy(t) be given by [64]

x(m,v) = /oo sT(t)sy(t = 1)e*™dt. (3.29)
Then we have -
2)= [ Hr)x(t =7+ 70,00+ (3.30)

Finally, computing the squared magnitude of 7(t) and taking the expected value, we

have

B{ln()P} = [ K()lx(t = 7+0,0)dr. (331)

Note that the ambiguity function x evaluated at v = 0 is simply the autocor-
relation function for s7(t). Thus, this derivation shows that the expected value of
the squared magnitude of the matched filter output is equal to the range-scattering
function K(7) smeared out by the squared magnitude of the autocorrelation function
for the transmitted signal. The signal n(t), after possible further processing depend-
" ing upon the details of the radar system in question, is referred to as a range-profile.
Because of the strong relationship between the signal 7(t) as a function of time and

the reflectivity b(r) as a function of range, it is customary to ignore the spreading
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introduced by the autocorrelation function for the transmitted signal, and to consider
the received signal as a measurement of target reflectivity. Thus the range-profile is
defined as a time signal, produced by applying matched filtering and possibly other
processing to a received radar echo, and which is considered to be a measurement
of the distribution of the target reflectivity along the radar line-of-sight. By the dis-
cussion in Section 3.1.2, the range profile is invariant to translation in cross-range,
but is dependent on the range to the target, the orientation of the target relative to
the sensor, and the shape of the target. The next section is devoted to describing
appropriate models for the range-profile, with specific attention to the dependence on
the distribution of reflectivity over the target surface and on the target orientation.

3.2 Modeling Range-Profiles

The previous section introduced a statistical model for radar data known as the
WSSUS model. For targets unresolved in Doppler, this model describes the reflectivity
profile b(7) as a 0-mean Gaussian random process that is white in range or delay. The
model was used to derive an expression for the basic unit of HRR data, the range-
profile. While not made explicit in the notation, it is clear that b(r) and therefore
the range-profile will depend on the target orientation 6 and on the target type
a. The potential for joint estimation of {0,a} from range-profile data under a given
model is determined by the likelihood function for observing a particular range-profile,
given the orientation and target type. In this section, we consider both deterministic
and stochastic models for the range-profile, introduce candidate models, examine the

likelihood functions under these models, and discuss their relative merits.

A general form of a model for the range-profile is given by
(t) = s(t:0,0) + w(t), (3.32)

where r(2) is the complex envelope of the observed range-profile, s(¢; 6, a) is the signal
component of the waveform, and w(t) is a white Gaussian noise process of intensity
No. Note that we have made a significant change of notation here from the previous
section. The signal r(t) no longer represents the received radar echo, but rather
represents the output of the matched filter that in the previous section was referred
to as a range-profile and denoted by 7(t). An actual radar system, depending on the
exact form of the transmitted signal and other system-specific parameters, may apply
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significant processing in addition to the matched filter to produce range-profiles. In
the remainder of this section, we will think of r(t) as the final processed output of
the receiver, refer to it as a range-profile, and assume that it obeys the model (3.32).
The signal component s depends on the orientation of the target, 6, and on the target
tvpe a.

We are of course interested in applying the models we develop to real or sim-
ulated radar data, which is generally not available as a continuous waveform, but as
a sequence of samples of such a waveform. Therefore, we will consider a discretized
version of the model (3.32). Let the sampling be performed by integration of r(t)
against a unit-energy rectangular pulse of duration equal to the sampling interval.
The sampling interval is typically chosen to correspond to the range resolution of the
radar system in question. The pulse is shifted to produce the sample in each range
bin, and the resulting samples are collected into a vector r. The discretized version
of (3.32) becomes .

r=s(,a) +w, | _ - (3.33)

where s is the signal vector, and w is the noise vector. The entries of w are a sequence
of independent, Gaussian random variables with mean 0 and variance Ny whenever the
samples are collected by integrating against orthonormal functions. When pdssible,
range-profile data are typically calibrated so that the squared magnitude of the return
in each range bin represents a measurement of the radar cross section of that portion of-
the targét. For consistency with this practice, we will express the squared magnitude
of any element of r and the noise variance Ny in units of square meters.

Our interest in the HRR models we examine will be to evaluate the potential for
recognition of targets from range-profile data. A primary factor making recognition
difficult is the well-known fact that range-profiles exhibit extreme variability for small
changes in target orientation, an effect known as speckle or scintillation. The mecha- -
nism responsible for speckle in radar returns, as reported variously in [72, 70, 21], is
typically described in terms of phase cancellation. Consider monochromatic illumi-
nation of a radar target, or perhaps only that portion which lies within a particular
range bin, by a source of wavelength A. The reflected field is the sum of reflections
from all points on the target. If the orientation of the target is changed so that points
on the target move through a distance on the order of ), then the relative phases
contributing to the complete return will produce varying degrees of constructive and
destructive interference over the rotation. If the target is large compared to A, then
the rotation required to produce this effect will be very small. An important factor
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in evaluating HRR models will be the potential for recognition that is robust with
respect to radar speckle.

Models of the form (3.32) may be divided into two broad categories depending
upon whether the mapping from {6,a} to s(¢; 6, a) is deterministic or stochastic. The
question of which model is appropriate is an open one, and will be addressed later in
this section and in the next chapter. We begin by introducing a deterministic and a

stochastic model for consideration. .

3.2.1 Deterministic Model

The idea that the reflection of a radar signal by a macroscopic target is characterized
by a deterministic process is intuitively appealing. Given a complete characteriza-
tion of the target shape and the materials from which it is constructed, the methods
employed by the electromagnétics community can be used to describe all of the inter-
actions that take place between the target and the impinging wavefront. Thus it has
been the viewpoint of many investigators that the range-profile is computable given
the target orientation. In this case, given a and 6, s(t; 6, a) is deterministic, and the
~ likelihood function for the range-profile may be derived in a straightforward manner

using the results of [86].

Let the received signal r(t) be written as the sum
M
r(t) = A}Enoo ,,;;1 Tm&m(t), (3.34)

where {¢n,(t)} is a set of basis functions that form a complete orthonormal set, the

coefficients r,, are given by

= / r(£) b (t)dt | (3.35)
= / s(t:8)dm(t)dt + / w(t)dm(t)dt (3.36)

= $n(0) + wn, (3.37)

and convergence of the limit is in the mean square sense. The truncation of the series
representation for r(t) to M terms is denoted rps(t). The coefficients r,, are a set
of independent Gaussian random variables with mean s,,(#) and variance N,. Thus,
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the likelihood function for r,s(¢) is given by

p(rwl6) = IT x50 (~ Bl = sul®lrm = snO1) - (339

m"l

The likelihood function for the received waveform r(¢) is defined as .

_ p(rmlf)
p(rl0) = A}pr(rM]s(fe) 0)

(3.39)

Substituting (3.38) into the numerator and denominator of (3.39), evaluating the limit
-as M — oo, and taking the logarithm yields the log-likelihood function for observing
r(t) conditioned on the target type a and the target orientation 6,

L(rl6,a) = —Re{ JIZ08 —s(t 0, a)]s*(t; 0 a)dt} (3.40)

The received waveform r(t) enters this expression through an inner product
with the signal s(t; 6, a). Thus, in order to perfdrm maximum-likelihood estimation on
{0, a}, we must have available the deterministic reflection s(t; 8, a) for all orientations
and target types. In practice, this is achieved through the development of databases,
each of which contains the range-profiles for a given target at a discrete sampling of
the possible orientations. The choice of a deterministic model then reduces to the
choice of a particular algorithm for computing the range-profiles to be placed in the
database. Recently, a number of efforts have been made toward the development
of computer tools capable of simulating the data produced by a variety of remote
sensors. One such tool that has been developed for radar simulations is known as
XPATCH and is described in the next section. |

HRR Simulator: XPATCH

The HRR signature prediction tool known as XPATCH is a computer software pack-
age, developed jointly by Wright Laboratory and DEMACO, Inc., that is designed
to simulate the radar return from a given target {2]. The target is represented by a
collection of triangular patches and outward normal vectors. Additionally, material
parameters as well as edge and curvature information may be provided to further
characterize the reflective properties of the target surface. The algorithm is based
on a shooting and bouncing ray technique, in which rays are directed from the radar

toward the target, and traced as they are reflected by the various surfaces on the
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target. Those rays which are eventually directed back toward the radar contribute
to the return. This technique allows for incorporation of the effects of both shad-
owing, in which portions of the target remain unilluminated because they lie in the
shadow of other structures, and multi-bounce, in which the impinging wavefront may
reflect many times inside cavities on the target prior to reflection toward the radar.
- When simulating the range-profile for a particular target, the algorithm is invoked
to simulate the complex scattered far-field at discrete frequencies that are uniformly
spaced within the specified transmitter bandwidth. The range-profile is found from
the frequency-domain data through the Inverse Discrete Fourier Transform. |
Given the choice of XPATCH as a deterministic model for the range-profile, it
is desirable to know if the data simulated by this model support recognition, when
processed using the deterministic log-likelihood function of (3.40). To investigate this
possibility, a simple test was devised. The simulated data used for this test are drawn
from a standardized collection of XPATCH range-profiles, collectively known as the
University Research Initiative Synthetic Dataset. The following subsections describe

the dataset, and go on to present the results of our test.

The URISD

The University Research Initiative Synthetic Dataset (URISD) is a collection of simu-
lated range-profiles produced by the HRR simulator XPATCH. The URISD includes

range-profiles simulated for four ground vehicles over three frequency bands and at

three different elevation angles.

e Vehicles: 2 tank models, school bus, fire truck
o Frequency bands: UHF, L, X
e Elevation angles: 10°, 25°, 40°

Each vehicle is represented by a CAD model consisting of triangular patches covering
the surface of the vehicle and a simulated rough ground surface, included so that the
range-profiles exhibit the effects of reflections from the terrain in the vicinity of the
vehicle. The tank models are generic in nature and are not intended to represent
any particular existing tank; they are assigned the arbitrary labels of “ml1” and
“t1”. The 36 data sets comprising the URISD each contain range-profiles for target .
azimuth angles that are uniformly sampled around the circle at a density that depends
on the frequency band. Additionally, the data sets contain range-profiles simulated
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Table 3.1: Frequency and azimuth parameters for the URISD.

Frequency Band UHF L X
Center Frequency 600 MHz 1.5 GHz 10.0 GHz
Bandwidth 739.5 MHz | 739.5 MHz | 1.4775 GHz
Frequency Sample Spacing | 4.921 MHz | 4.921 MHz | 4.921 MHz
| Number of Frequency Samples 151 151 301
Azimuth Angle Spacing 0.3° 0.15° 0.02°
Number of Azimuth Samples 1201 2401 18001

for each of the four combinations of transmitted and received linear polarization
states, {hh, hv,vh,vv}. The parameters for the various data sets are summarized in
Figure 3.1.

We have made use of these data in developing a simulation of joint orientation
tracking and recognition that is presented in Chapter 5. Additionally, these data
were used in a number of sirhple tests presented in the remainder of this chapter to
compare the recognition performance associated with candidate HRR models and the

associated likelihood functions.

Recognition Tesf: L-band Data

Range-profiles were drawn from the URISD for the purpose of testing the recognition
performance under the deterministic log-likelihood function (3.40). For the first test,

" we selected a subset of the L-band data; the range-profiles for each of the four targets
at an elevation of 10 degrees and for azimuth angles over the range of 10 to 30
degrees were extracted and placed into libraries for each target. Also for this test,
only the data for the vv polarization state were used. The ra.nge-proﬁlés are depicted
in Figure 3.2. For ease in viewing, the figure shows only those range-profiles for
azimuths between 10 and 15 degreés. The upper left panel shows the range-profiles
for a fire truck. The lower left panel shows the range-profiles for a school bus. The
right panels show the range-profiles for the two tank models.

As evidenced by the figure, the range-profiles produced by XPATCH exhibit
extreme variability for small changes in azimuth angle. This behavior is in general
agreement with that observed for real data. To test whether this varié,bility allows for
the use of these data for recognition, the range-profile from the fire truck dataset at an
azimuth angle of 19.95 degrees was selected as an observation, and the log-likelihood
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Figure 3.2: Simulated L-

50




4000 . r . . - . 4000

;
Log-likelihood
)

Log-Fkelihood
L
8

B¢

10 12 14 16 18 20 x 24 26 28 -30 17 18 19 20 2t 22 2
Azirmuth (degrees) Azimuth (degrees)

Figure 3.3: Deterministic model log-likelihood function for a four-vehicle recognition
test using L-band data. The range-profile for the fire truck at 19.95 degree azimuth
was selected as an observation, and the deterministic model log-likelihood was com-
puted for each vehicle for azimuth angles from 10 to 30 degrees. The right panel is an
enlargement of the left panel showing the behavior in the vicinity of the true azimuth.
In both panels, the solid line shows the log-likelihood for the correct vehicle, the fire
truck. '

function in equation (3.40) was computed for each of the four vehicles over the range
of azimuth angles from 10 to 30 degrees. The results of this test are depicted in
Figure 3.3. The left panel of the figure shows the log-likelihood for all azimuth angles,
while the right panel is an enlargement showing the behavior near the true azimuth
angle. In both panels, the solid line shows the log-likelihood for the correct vehicle,
the fire truck. The results of this test show that recognition is possible using these
data, in that the likelihood of the correct vehicle in the vicinity of the true azimuth
angle is larger than the likelihood for any of the incorrect vehicles. However, the
figure also shows that the azimuth angle must be estimated to within £0.5 degrees
of the truth for recognition to be successful. These results are in accordance with

previous simulations using other targets.

It is important to note that no noise was added to the observation prior to
conducting this test. However, we cannot set Ny = 0 for the likelihood calculation,
as Np appears in the denominator of (3.40). We therefore chose to set Ny = 0.01
square meters for the computation of the likelihood function depicted in Figure 3.3.
This value was chosen both because it represents a high signal-to-noise ratio, and
for comparison with some results appearing later in this chapter in which the same
noise level is used with a different model for the data. We may therefore interpret
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the plots of Figure 3.3 as depicting the expécted value of the log-likelihood function,
where the expectation is over the ensemble of realizations of the noise process. Given
this interpretation of the figure, we can now say that for this case the log-likelihood
of the correct vehicle in the vicinity of the true azimuth angle is larger than that of

any of the incorrect vehicles by a margin of more than 1500.

Recognition Test: X-band Data

The test presented above was repeated using X-band data from the URISD. As before,
the data for each of the four vehicles at 10 degrees elevation, for vv polarization, and
for azimuth angles between 10 and 30 degrees were placed in libraries. Selected range--
profiles from these libraries are shown in Figure 3.4. The range-profile for the fire
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Figure 3.5: Deterministic model log-likelihood function for a four-vehicle recognition
test using X-band data. The range-profile for the fire truck at 19.95 degree azimuth
was selected as an observation, and the deterministic model log-likelihood was com-
puted for each vehicle for azimuth angles from 10 to 30 degrees. The right panel is an
enlargement of the left panel showing the behavior in the vicinity of the true azimuth.
In both panels, the solid line shows the log-likelihood for the-correct vehicle, the fire
truck.

truck at 19.93 dégrees azimuth was selected as an observation, and the deterministic
log-likelihood function was computed for each vehicle and azimuth. The results. of
this test are presenfed in Figure 3.5. . v

Again the figure shows a positive result for recognition, as the likelihood for
the correct target in the vicinity of the true azimuth angle is la,rger‘ than that for
any other vehicle, but the azimuth angle must be known to within 0.1 degrees of the
truth for correct recognition. It is unknown if such accuracy in orientation estimation
is achievable in any realistic setting. As in the L-band test, we have set Ny = 0.01
in computing the log-likelihood function, so that the plot in Figure 3.5 depicts the
expected value of the log-likelihood function over the ensemble of noise realizations.
We see that the log-likelihood for the correct target at the true azimuth is larger than
that for any other target by a margin of 10%.

Limitations of the Deterministic Model

The practical problem with the deterministic model as demonstrated in these tests is
that all of the variability of range-profiles with changing target orientation is reflected
in the likelihood function. It would be far more desirable if the model for range-profiles

captured those features of the data that are relatively invariant over small changes in
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orientation. It has been the approach of some investigators to choose a particular fea-
ture, aver that it is invariant to target orientation, and to perform recognition directly
in the feature space. This is not an entirely unreasonable approach, as examination
of simulated and real range-profiles reveals that certain observably invariant features
seem to exist. For example, it has been widely reported that for small changes in
orientation, the amplitudes of peaks in the range-profile change drastically, while the
range locations of the dominant peaks do not. Rather than choosing a particular set
of features for recognition, in the next section we consider a simple stochastic model
that characterizes the statistics for range-profiles for a particular target over a small
region in orientation.

The fundamental assumption inherent in the use of a deterministic model is
that the range-profile is computable given the target orientation. This may or may
not be physically accurate. For aircraft targets, even ignoring propagation effects,
the airframe flexes during flight introducing variations in the range-profiles by mov-
ing relative distances of pairs of points through more than a wavelength. Similarly,
ground vehicles experience vibration induced by the propulsion system. This flex-
ing or vibration itself may be enough to invalidate the deterministic model. Other
physical effects such as moisture or dirt on the target and control surface movement
for airframes or wheel rotation for ground vehicles are not adequately modeled by
signature prediction tools. These indicate that stochastic models (based in large part
on the outputs of tools such as XPATCH) may be best for HRR range-profiles. In

the next section, we introduce a candidate stochastic model.

3.2.2 Conditionally Gaussian Model

In this section we consider a stochastic radar model under which, given the target
type and orientation, the signal portion s(t; 6, a) of the received range-profile forms a
complex Gaussian random process. The conditional mean and covariance are denoted
as p(t|6,a) and K(t,12]6,a), respectively. The WSSUS model assumes that returns
from different delays 7 are statistically uncorrelated. For our conditionally Gaussian

model, we extend this assumption to samples of the range-profile.

Let the model be discretized such that samples of the received range-profile
r(t) are collected in the column vector r. Sampling is performed by integrating

the received range-profile against unit-energy signals, typically rectangular pulses, of
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duration equal to the samplihg interval, as discussed earlier. Then the model is
r=s(f,a)+w, (3.41)

where, given {6,a}, s is a Gaussian random vector with mean p(6, @) and covariance

matrix K(6,a), and w is also Gaussian with mean 0 and covariance NoI. Thus,

E{rl6,a} = p(6,a) (3-42)

E{[r - l‘(ea a)]t[r - /‘(07 a’)]w’ a} K(ea a) + ArOL (343)

where * denotes complex conjugate transposition. Under this model, the log-likelihood

of observing r given {6,a} is
I(r]0,a) = —1n |[K + NoI| — [r — p]'(K + NoI)7![r — 4], (3.44)

where, for notational simplicity, we have suppressed the explicit dependence of K and

p on 0 and a. The key assumption of the conditionally Gaussian model is that the

‘returns from different range bins are statistically uncorrelated, so that K is a diagona?
matriz. There are several possible assumptions on s(t; 6, a) that would yield indepen-
dence of the range samples. One is that the sampling is performed by integrating r(t)

against eigenfunctions of the autocorrelation function for s(t;0,a). Another is that

s(t;6,a) is uncorrelated with itself at different times ¢,

' K(t, 120, a) = K(t1]0,a)8(t, — t2), (3.45)

and that sampling uses non-overlapping rectangular pulses.

Recognition Tests: L-band and X-band

We implemented this model on the simulated HRR datasets used in the previous
section for the purpose of testing recognition performance. A sliding window in
orientation was defined. The size of the window was arbitrarily chosen to be 3 degrees
for the L-band data and 1 degree for the X-band data. Initially, the edge of the window -
was set to the minimum azimuth for all the range-profiles in the dataset, namely 10
degrees. All of the range-profiles corresponding to azimuth angles inside the window
were drawn from the dataset for a particular vehicle, and the mean range-profile and

the variance within each range bin were computed. The window was shifted by one
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Figure 3.6: Conditionally Gaussian model log-likelihood functions for four-vehicle
recognition tests. The range-profile for the fire truck at 19.95 degree azimuth was
selected as an observation, and the conditionally Gaussian log-likelihood was com-
puted for each vehicle for azimuth angles from 10 to 30 degrees. The left panel shows
the results for L-band data, while the right panel shows the results for X-band data.
In both panels, the solid line shows the log-likelihood for the correct vehicle, the fire

truck.

position, and the computation was repeated. In this manner, the mean u and the
diagonal elements of K were determined for each window position over the azimuth

angles from 10 to 30 degrees. This process was repeated for each of the four vehicles.

A range-profile for a particular vehicle at a particular azimuth was selected as
an observation r, and the log-likelihood (3.45) was computed for each position of the
sliding window and each vehicle. Because no noise was added to the observation, N,

was set to zero for the log-likelihood computation.

The results of this test are presented in Figure 3.6. The observation was
selected as the range-profile for the fire truck at 19.95 degrees azimuth. It is clear
from the figure that a very significant improvement in performance was achieved for
this example. The log-likelihood for the correct vehicle is larger than that for any
other vehicle by a margin of more than 200 for the L-band data, and by a margin of
more than 3000 for the X-band data. More importantly, this log-likelihood margin is
stable over the entire range of azimuth angles considered, so that correct recognition

is possible for this example even when the azimuth is in error by 10 degrees.
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Range Windowing

This test was modified and repeated in order to validate the results shown above.
The modification was to apply a window to all of the range-profiles in the dataset
for each target, such that the returns from range bins corresponding to the simulated
rough ground were eliminated, and only returns from the range extent of the vehi-
cle remained. The determination of which range bins to select was made by visual
inspection of the data, and the same range bins were selected from range-profiles
‘for all vehicles at all azimuth angles. This modification was performed to eliminate
the influence of the returns from the terrain on recognition. It has been observed
that the variance of the returns from these range bins is very small, thereby possibly

over-weighting these returns in the log-likelihood calculation.

Given this modification, the test was repeated using X-band data and for
the same observation used previously, the fire truck at 19.95 degrees azimuth. The
modified test was also applied for observations of other vehicles at other azimuth
angles. The results of these tests are shown in Figure 3.7. The upper left panel
shows the results when observing the fire truck for comparison with the right panel of
Figure 3.6. Such a comparison reveals that the elimination of range bins corresponding
to the simulated terrain resulted in a slight lowering of the log-likelihood for all targets
at all angles by a constant amount, but did not affect recognition performance in any
significant way. The lower left panel shows the result when the observation is the
school bus at 25 degrees azimuth. The two right panels show the results when the
observations are each of the two tank models at 15 degrees azimuth. In each panel,
the solid line shows the log-likelihood for the fire truck, the dotted line represents the
ml tank, the dashed line represents the school bus, and the dot-dash line represents
the t1 tank.

The results of these tests are somewhat less positive than those of Figure 3.6.
Specifically, for the observation of the school bus at 25 degrees azimuth or the t1 tank
at 15 degrees azimuth, the log-likelihood margin for the correct vehicle for azimuth
angles in the vicinity of the truth is approximately 300, and significant errors in
azimuth angle can lead to incorrect recognition. For the school bus, the azimuth
angle must be known to within +2 degrees of the truth for successful recognition.
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Figure 3.7: Conditionally Gaussian model log-likelihood functions for four-vehicle
recognition tests. In the upper left panel, the range-profile for the fire truck at 19.95
degrees azimuth was selected as an observation, and the conditionally Gaussian log-
likelihood was computed for each vehicle for azimuth angles from 10 to 30 degrees.
The lower left panel shows the result when the observation is the school bus at 25
degrees azimuth. The two right panels show the results when the observations are
each of the two tank models at 15 degrees azimuth. In each panel, the solid line
shows the log-likelihood for the fire truck, the dotted line represents the m1 tank, the
dashed line represents the school bus, and the dot-dash line represents the t1 tank.
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Artificial Noise Variance

A further modification of the tests shown above was conducted. The modification was
to introduce a non-zero value for Ny to the conditionally Gaussian log-likelihood func-
tion (3.44), even though the observation contains no additive noise. The concern is
that if the computed variance in some range bins is very small, then the returns from
these range bins will be' overemphasized in the log-likelihood function. By adding
a small constant amount to the diagonal of the covariance matrix, the returns from
such range bins will be de-emphasized, possibly resulting in improved performance.
The results of this modification for a value of Ny of 0.01 square meters are summa-
rized in Figure 3.8. In each panel, the solid line represents the log-likelihood for the
correct vehicle, and the dot-dash line represent the log-likelihood for the next most
likely vehicle, each for a noise variance of 0, as shown in the corresponding panel of
Figure 3.6. The dotted line represents the log-likelihood for the correct target, and
the dashed line represents the log-likelihood for the next most likely target, g:ach for

a noise variance of 0.01.

This test allows for a direct numerical comparison of the log-likelihood values
under our two candidate target models. The upper left panel of Figure 3.8 indicates
that the log-likelihood for the correct vehicle at the true azimuth is larger than that
for any other vehicle by a margin of roughly 3000. In the previous subsection, we
saw that under the deterministic model, using the same correct vehicle, true azimuth,
and noise variance, the log-likelihood margin was 10*. Thus, this example shows that
the log-likelihood margin is actually larger under the deterministic model, but this

margin is achieved over an exceedingly narrow range in azimuth.

The plots of Figure 3.8 indicate that the recognition performénce was not
significantly altered by the addition of a small constant value to the variance. The
exception to this was the case where the school bus was observed, shown in the lower
left panel of Figure 3.8. Notice that the deep troughs in the likelihood function
for the correct target were shallowed by the modification. This suggested that the
recognition performance under the conditionally Gaussian model might be improved
by this technique for the proper choice of N,. The test was repeated using a value
of Ny of 0.1 square meters. The results of this test are shown in Figure 3.9. In
each panel, the solid line represents the log-likelihood for the correct vehicle, and the
dot-dash line represent the log-likelihood for the next most likely vehicle, each for a

noise variance of 0, as shown in the corresponding panel of Figure 3.6. The dotted
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Figure 3.8: Comparison of conditional Gaussian log-likelihood functions for noise
variances of 0 and 0.01 square meters. In each panel, the solid line represents the log-
likelihood for the correct vehicle, and the dot-dash line represent the log-likelihood
for the next most likely vehicle, each for a noise variance of 0, as shown in the
corresponding panel of Figure 3.6. The dotted line represents the log-likelihood for
the correct target, and the dashed line represents the log-likelihood for the next most

likely target, each for a noise variance of 0.01.
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Figure 3.9: Comparison of conditional Gaussian log-likelihood functions for noise
variances of 0 and 0.1 square meters. In each panel, the solid line represents the log-
likelihood for the correct vehicle, and the dot-dash line represent the log-likelihood
for the next most likely vehicle, each for a noise variance of 0, as shown in the
corresponding panel of Figure 3.6. The dotted line represents the log-likelihood for
the correct target, and the dashed line represents the log-likelihood for the next most
likely target, each for a noise variance of 0.1.
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line represents the log-likelihood for the correct target, and the dashed line represents
the log-likelihood for the next most likely target, each for a noise variance of 0.1.
Inspection of the plots of Figure 3.9 might initially suggest that the recognition
performance was worse for the larger value of Ny = 0.1 sqﬁa,re meters, as the log-
likelihood for the incorrect target is in each case increased after the modification.
However, it is still the case that correct recognition is achievable for all for cases, albeit
with a somewhat decreased log-likelihood margin. A very interesting result occurred
for the observation of the school bus, shown in the lower left panel. In this case,
the troughs in the log-likelihood were almost complétely eliminated, with the result
that correct recognition is achievable over a much wider range of azimuth angles as a
result of this modification. Thus, all four cases represented by Figure 3.9 indicate that
correct recognition is achievable under the modification of the conditionally Gaussian

model, even when the azimuth angle is in error by 5 degrees or more.

Recognition Test for Broadside Aspect

As a further comparison between the recognition performance under the deterministic
and conditionally Gaussian models, a search was conducted for instances in which the
performance under the conditionally Gaussian model was particularly poor. Such a
case was found when the school bus was observed at azimuth angles near 90 degrees
or broadside to the radar. The recognition problem for this case is expected to be
difficult, as all four vehicles possess large, flat lateral surfaces that are normal to the
radar as these azimuths. The range-profiles for all four vehicles at these azimuths
-are dominated by a strong peak at the range location of the lateral surface. This
similarity in the data is shown in Figure 3.10. The range-profile for the school bus at
90 degrees azimuth was selected as an observation and the log-likelihoods under both
models were computed for all four vehicles over the range of azimuth angles from 80
to 100 degrees. The resulting log-likelihood functions are shown in Figure 3.11. The
left panel shows the log-likelihood for the deterministic model. The right panel shows
the log-likelihood for the conditionally Gaussian model. Both panels in this figure
are enlargements that show the behavior near the true azimuth angle. The results
of this test show that recognition is indeed difficult for this case. The deterministic
model results in a log-likelihood margin of more than 6 x 10°, but only if the azimuth
angle is known to within 0.1 degrees of the truth. The conditionally Gaussian model
results in a log-likelihood margin of more than 1000, but only if the azimuth angle is
known to within 0.5 degrees of the truth. For this example, use of the conditionally
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Figure 3.10: Simulated X-band range-profiles for four ground vehicles near 90 degrees
azimuth. The upper left panel shows the range-profiles for a fire truck. The lower
left panel shows the range-profiles for a school bus. The right panels show the range-
profiles for two tank models.
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Figure 3.11: Log-likelihood functions for four-vehicle recognition tests near 90 degrees
azimuth. The observation is the range-profile for the school bus at 90 degrees azimuth.
The left panel shows the log-likelihood for the deterministic model. The right panel
shows the log-likelihood for the conditionally Gaussian model. In both panels, the
solid line is for the correct vehicle, the school bus.

Gaussian model resulted in an increase in the range of azimuth angles over which
correct recogriition is achievable, but also resulted in a decreased log-likelihood mar-
gin for the correct vehicle. It is interesting to note that the width of the range in
~azimuth angles over which the log-likelihood for the conditionally Gaussian model
is approximately constant is roughly equal to the width of the orientation window
over which the mean and variance were computed. This suggests that the recognition
performance may be stabilized over larger ranges in azimuth by increasing the width

of the sliding window.

Recognition Test: NVESD Millimeter-Wave Radar

We have conducted an additional recognition test using simulated millimeter-wave
radar data. We obtained CAD models for two ground vehicles, a tank and a HMMWV
personnel vehicle, and used XPATCH to simulate range-profiles for these vehicles. For
these simulations the elevation angle was held constant at one degree, and the azimuth
angle was varied between 10 and 30 degrees in increments of 0.01 degrees.

The frequency parameters for the XPATCH simulations were motivated by
" real millimeter-wave range-profiles obtained from the U.S. Army Night Vision Elec-
tronic Sensors Directorate. Examples of these range-profiles are shown in Figure 3.12.
Examination of the range-profiles reveals that there are approximately 20 range bins
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Figure 3.12: Real millimeter-wave range-profiles of a ground vehicle of unknown type.
The left panel shows the range-profile for horizontal polarization during transmission
and reception, and the right panel shows the corresponding range-profile for vertical
polarization during transmission and reception. These data were provided courtesy
of the U.S. Army Night Vision Electronic Sensors Directorate.

in which the magnitude is larger than the background. If this region defines the tar-
get extent in the range-profile, and if the target extent in the range dimension is 10
meters, then the size of each range bin is 0.5 meters. Furthermore, if B denotes the
bandwidth, and if the return is sampled at a rate of % so that the size of a range bin
is equal to the range resolution, then B is approximately 300MHz. Given that there
are 64 frequency samples in the data provided to us, the frequency spacing between
samples should be somewhat less than 5MHz. We were informed by NVESD that
the center frequency for this radar is approximately 35GHz. Therefore, we chose the
following frequency parameters for our simulations. The center frequency was set to
35GHz, and the return was simulated at 64 discrete frequencies with 5MHz between
adjacent frequencies. The resulting range resolution of the simulated data is 0.47

meters.

Examples of the simulated range-profiles are shown in Figure 3.13. The left
panel shows the range profiles for the HMMWYV at a fixed elevation angle of 1 degree
and for azimuth angles between 10 and 10.3 degrees. The right panel shows the range
profiles for the tank model at the same set of orientations.

We performed a recognition test similar to those presented earlier using the
simulated millimeter-wave range-profiles. The range-profile for the tank at 20 degrees
azimuth was selected as an observation, and the log-likelihood for both vehicles at
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Figure 3.13: Simulated millimeter-wave range profiles for two ground vehicles. The
left panel shows the range profiles for a HMMWYV personnel vehicle at a fixed elevation
angle of 1 degree and for azimuth angles between 10 and 10.3 degrees. The right panel
shows the range profiles for a tank model at the same set of orientations.

azimuth angles between 10 and 30 degrees was computed. The resulting log-likelihood
functions under the two models are shown in Figure 3.14. This figure displays many
of the features seen in our previous recognition tests. Recognition is possible under
both models in that the likelihood of the correct target at the true orientation is larger
than the likelihood for the incorrect target. The likelihood margin between the correct
target and incorrect target at the true azimuth is larger under the deterministic model
than under the Gaussian model. However, the deterministic model is not robust with
respect to orientation as there are many orientations at which the likelihood of the
incorrect target is larger than that of the correct target. In contrast, the Gaussian

model is robust with respect to orientation.

Model Comparison Using Rome Laboratory Real Range-Profiles

The various investigations of our two candidate models for HRR data have thus
far made exclusive use of simulated range-profiles. In this section we extend the
comparison to include real data. We have been provided with HRR range-profiles
collected at the U.S. Air Force Rome Laboratory radar facility. In this experiment,
targets of opportunity were illuminated by an S-band radar. The transmitted signal
was a linear FM chirp, with a center frequency of 3.408 GHz and a bandwidth of
320MHz. Vertical polarization was used during transmission and reception. Each
data set consists of 119 range-profiles collected over a time interval of less than one
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Figure 3.14: Log-likelihood functions for a two-vehicle recognition test using simulated
millimeter-wave range-profiles. The left panel shows the log-likelihood under the
deterministic model and the right panel shows the log-likelihood under the Gaussian
model. In both panels, the solid line represents the result for the correct vehicle, the
tank.

second, with successive range-profiles occurring approximately 4 milliseconds apart.
Figure 3.15 displays the range-profiles from three of the aircraft collected in this
experiment. The left panel shows the range-profiles for a DC-10 aircraft. The center

and right panels show the range-profiles for DC-9 and Cessna 310 aircraft, respectively.

We wish to use these data to perform a model comparison testing the poten-
tial for recognition under each model, similar to those conducted previously with
simulated data. However, due to several characteristics distinguishing these real
range-profiles from the simulated data, we have made significant modifications to
the computations used for model comparison. First of all, we have available to us
only the real data here, including receiver noise and any other distortions resulting
from the collection process. As a result, these noisy observations will be used in
place of both the observed data r and the signal portion s in our likelihood calcula-
tions. Also, the change in the orientation of the illuminated aircraft with respect to
the radar system between adjacent range profiles is exceedingly small. Therefore, we
have used all 119 range-profiles from each aircraft to compute a single template under
each model. For the Gaussian model, the template will consist of the mean range- -
profile and the variance in each range-bin as before. For the deterministic model,
the template will consist of the mean range-profile. This is a significant change from
the computations performed using simulated data, in which the deterministic model

templates consisted of individual range-profiles drawn from the dataset. Also, for
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Figure 3.15: Real S-band range-profiles for three commercial aircraft. Each panel
displays 119 range profiles collected at 4 millisecond intervals. The left panel shows
the range-profiles for a DC-10 aircraft. The center and right panels show the range-
profiles for DC-9 and Cessna 310 aircraft, respectively. Data courtesy of the U.S. Air
Force Rome Laboratory.

both models, we will use each individual range-profile from each aircraft as a distinct
observation to compare to the single template. This is another difference from the
case of simulated data, in which we drew a single range profile from the dataset and
declared it to be the observation. Additionally, we do not know the noise variance
associated with these data. We have therefore chosen an arbitrary value for No of
0.1 for the likelihood comput»ations. Note that Ng is not in units of square meters
here, as the range-profiles are not calibrated in these units. Finally, we do not know
the aircraft orientation at the illumination times, and it likely that the orientations
assumed by the three aircraft during the experiment are completely different.

With all of the listed caveats, Figure 3.16 shows the results of our model
comparison. The left panel shows the resulting log-likelihood functions under the
deterministic model, and the right panel shows the log-likelihoods under the Gaussian
model. In both panels, the solid line represents the data for the correct aircraft,
the DC-10, the dashed line represents the DC-9, and the dotted line represents the
Cessna 310. While there were many differences between this model comparison and
those presented previously using simulated data, the results depicted in the figure
are in general agreement with the conclusions we have alreédy drawn with respect to

the models. The log-likelihood margin between the correct target and the incorrect

target is, at many orientations, larger under the deterministic model. However, the
deterministic model is not robust with respect to small changes in orientation, and
there are several orientations at which incorrect recognition would result under the
deterministic model. In contrast, the Gaussian model is robust with respect to small

changes in orientation, at the expense of a lowered log-likelihood margin. There are
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Figure 3.16: Model comparison using real HRR range-profiles. Each of the 119 range-
profiles for the DC-10 aircraft were compared to a single template for each aircraft.
The left panel shows the resulting log-likelihood functions under the deterministic
model, and the right panel shows the log-likelihoods under the Gaussian model. In
both panels, the solid line represents the data for the correct aircraft, the DC-10, the
dashed line represents the DC-9, and the dotted line represents the Cessna 310. '

no orientations at which incorrect recognition would occur under the conditionally
Gaussian model.

Clearly this is only a preliminary comparison of our two models using real data.
It is desired to perform a more extensive comparison, using many more range-profiles
collected for more targets, and where the target orientation at the illumination times
is known to within some specified tolerance. We are currently working with personnel
from the U.S. Army Missile Command to obtain data for such a test.

Recognition Test for Variation in Two Orientation Angles

The tests presented above have investigated the recognition performance under our
two models for small changes in a single orientation angle. To extend the results of
these tests, we have conducted similar tests using data from aircraft targets in which
two orientation angles are varied. For this test, CAD models for the X-29 and the
F-117 aircraft were obtained, and XPATCH was used to simulate range-profiles for
these targets at a discrete set of orientations defined by the yaw and pitch angles of
the target relative to the sensor. Both the yaw and pitch angles were varied over
the range from -10 to 10 degrees, where 0 degrees yaw and 0 degrees pitch is defined
to be the nose-on orientation. The yaw angle was sampled uniformly at 0.2 degree
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Figure 3.17: Simulated S-band range-profiles for two aircraft models. The left panel
shows the range-profiles for the F-117 aircraft at a fixed yaw angle of -0.4 degrees
and for pitch angles in between -10 and -4 degrees. The right panel shows the range-
profiles for the X-29 aircraft at the same set of orientations.

intervals, and the pitch angle was sampled at a yaw-dependent interval chosen to
keep the arc length on the unit sphere between neighboring pitches approximately
0.2 degrees. This sampling scheme resulted in a discrete set of 10,165 orientations for
each aircraft.

Examples of the range-profiles for each of the two aircraft are shown in Fig-
~ ure 3.17. The left panel shows the range-profiles for the F-117 aircraft at a fixed yaw
angle of -0.4 degrees and for pitch angles in between -10 and -4 degrees. The right
panel shows the range-profiles for the X-29 aircraft at the same set of orientations.
The frequency parameters for these simulations were chosen to approximate those of
the S-band radar facility at Rome Laboratory described in the previous section: the
center frequency is 3.2GHz, the bandwidth is 320MHz, and the range resolution is
0.46 meters.

The range-profiles produced by XPATCH were collected into libraries for use
in the recognition tests. For the deterministic model, all 10,165 range-profiles for
each aircraft were placed in the libraries. For the conditionally Gaussian model, a
moving patch in orientation was defined. The size of the patch was 1.2 degrees in
both yaw and pitch. To begin, the edges of the patch in both yaw and pitch were
set to -10 degrees. All range-profiles corresponding to orientations within the patch
were collected, and the mean range-profile and the variance in each range bin were
computed. The patch was shifted by 0.6 degrees in pitch, and the mean and variance

were again computed. This process was repeated, each time shifting the patch by 0.6

70




degrees in yaw or pitch, to produce 961 overlapping patches for yaw and pitch between
-10 and 10 degrees. The libraries for the conditionally Gaussian model contain the

mean and variance range-profiles computed from each patch.

Novel range-profiles were simulated for each of the aircraft at a yaw angle of
-4.34 degrees, and at a pitch angle of 4.37 degrees. These range-profiles were used as
‘the observations for the recognition tests. Thus, for the tests that follow, the observed
range-profile appears nowhere in the libraries for the deterministic model, and is not

used in computing any library element for the stochastic model.

For the first test, the observed range-profile for the F-117 was selected, and the
deterministic model log-likelihood was computed for both aircraft at all orientations.
Although no noise was added to the observation used for this test, the log-likelihood
was computed using a value for Ny of 0.1 square meters. The results of this test are
shown in Figure 3.18. The upper left panel shows the log-likelihood surface for the F-
117 aircraft at varying orientations, and the upper right panel shows the log-likelihood
surface for the X-29 aircraft. To aid in interpreting these results, the lower panels
show the difference between the log-likelihoods for the two aircraft as a function of
yaw and pitch. The lower right panel shows this difference as an image. Regions
where the log-likelihood for the correct aircraft is higherb than that for the incorrect
aircraft are shown in white, regions where the log-likelihood for the incorrect aircraft
is higher are shown in gray, and the true orientation is marked by an “X”. From this
panel it is clear that even a small error in orientation may lead to incorrect recognition

for this case.

This test was repeated under the conditionally Gaussian model. The log-
likelihood of the F-117 observation arising from each of the 961 orientation patches
was computed for each aircraft type.  To enable comparison with the results under
the deterministic model, Ny was set to 0.1 square meters. The results of this test
are shown in Figure 3.19. The upper left panel shows the log-likelihood surface for
the F-117 aircraft at varying orientations. The upper right panel shows the log-
likelihood surface for the X-29 aircraft. The lower panel shows the difference between
the log-likelihoods for the two aircraft as a function of yaw and pitch. Note that
the log-likelihood difference is positive for all orientations. Therefore, an image is
not shown in this figure, as it would be everywhere white. The results of this test
indicate better performance for the conditionally Gaussian model, in the sense that
correct recognition is possible when the orientation estimate is in error by several

degrees. Under the deterministic model, small errors in the orientation estimate can
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Figure 3.18: Deterministic model log-likelihood functions for a two-aircraft recogni-
tion test. The observation was the range-profile for the F-117 aircraft at -4.34 degrees
yaw and 4.37 degrees pitch. The upper left panel shows the log-likelihood surface for
the F-117 aircraft at varying orientations. The upper right panel shows the log-
likelihood surface for the X-29 aircraft. The lower panels show the difference between
the log-likelihoods for the two aircraft as a function of yaw and pitch. The lower right
panel shows this difference as an image, such that regions where the log-likelihood for
the incorrect aircraft type is higher than that for the correct aircraft type are shown
in gray, and regions where the log-likelihood for the correct aircraft type is higher
than that for the incorrect aircraft type are shown in white. The true orientation is
marked by an “X” in the lower right panel.
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Figure 3.19: Conditionally Gaussian model log-likelihood functions for a two-aircraft
recognition test. The observation was the range-profile for the F-117 aircraft at -4.34
degrees yaw and 4.37 degrees pitch. The upper left panel shows the log-likelihood
surface for the F-117 aircraft at varying orientations. The upper right panel shows
the log-likelihood surface for the X-29 aircraft. The lower panel shows the difference
between the log-likelihoods for the two aircraft as a function of yaw and pitch.
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lead to incorrect recognition. Closer inspection of the data plotted in the two previous
figures reveals that, under either model, the log-likelihood for the correct target in
the vicinity of the true orientation is larger than that for the incorrect target by a
margin of roughly 4000.

The tests conducted so far have shown consistently superior performance for
the conditionally Gaussian model over the deterministic model, but these tests have
considered data from only a single polarization channel, namely vertical polarization
during both transmission and reception. In the next subsection, we consider the use
of data from multiple polarizations, describe variations on the conditionally Gaussian
model to incorporate polarization diversity, and perforrh further tests to investigate

if the recognition performance is improved.

3.3 Incorporation of Multiple Polarizations

In the development thus far, we have considered a radar signal to be a single, complex-
valued function of time. Of course an actual radar signal is in fact an electromagnetic
wave, and a complete characterization of the signal should be in terms of the prop-
agation of the electromagnetic field. In this section, we discuss the concept of wave
polarization, and extend the conditionally Gaussian model to polarimetric radar data.
We proceed to repeat the recognition tests presented previously for the resulting po-

larimetric model, using two different forms for the polarimetric covariance.

3.3.1 Wave Polarization

For a plane wave traveling in free space, the electric field and magnetic field vectors
remain orthogonal to each other and to the direction of propagation, while their
lengths and directions vary in time and space. The polarization state of the wave is
defined by the locus of points traced out by the electric field vector. Let a point be
chosen at a fixed distance along the radar line-of-sight, and consider the variation of
the electric field vector in the plane perpendicular to the line-of-sight at this point.
For a fully polarized wave, the tip of the electric field vector traces out an ellipse in
this plane over time [40]. If time is fixed, then the tip of the electric field vector forms
an elliptical spiral in space. This general case is known as elliptical polarization.
The polarization ellipse is defined by the length of the elliptical axes and by the tilt
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angle defining the angular orientation of the elliptical axes with respect to the spatial

coordinate axes.

Circular polarization is the case where the axes of the polarization ellipse are
of equal length. Left-circular and right-circular polarization correspond to the cases
where the rotation of the electric field vector with time is clockwise and counter-

clockwise, respectively [40].

Linear polarization is the case where one of the axes of the polarization ellipse
is of zero length, so that the electric field vector varies along a line segment. If in

addition the tilt angle is zero, then the polarization is either horizontal or vertical.

Radar reflections from a target will in general depend upon the polarization
state of the incident wave. An important consequence of the physics of plane wave
polarization is that a wave with arbitrary elliptical polarization may be represented
as the sum of two appropriately chosen linearly polarized waves. Thus, the response
of a target to plane waves of arbitrary polarization can be summarized by the hori-
zontally and vertically polarized reflections in response to horizontally and vertically
polarized incident waves [46]. This characterization is typically defined in terms of a
scattering matrix. The scattering matrix formulation for monochromatic illumination

at frequency f can be defined

EL(F)

Ef)

_ Sun(f) Sko(f) Ei(f)
[s,,hm s,,,,(f)] [E:;(f) } 240

where [Ei(f) Ei(f)]¥ are the horizontally and vertically polarized incident fields,
and [EL(f) E1(f)]T are the reflected fields. For the entries in the scattering matrix,
the first subscript denotes the polarization state during reception and the second
subscript denotes the polarization during transmission. Note that the effects of range

to the target and antenna gain have been ignored in this formulation.

Equation (3.46) suggests a simple technique to measure the scattering matrix
for a target: transmit a horizontally polarized wave, measure the horizontally and
vertically polarized responses, and repeat with a vertically polarized transmission.
The resulting matrix provides a complete characterization of the scattering properties
of the object in question at a particular orientation [16]. The inverse Fourier transform
of each of the entries in the scattering matrix yields a time-domain representation for
the scattering properties of the object, and can be collectively thought of as a set of
four reflectivity profiles 5(7) for the object for each of the linear polarization states.
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The entries in the scattering matrix share a deterministic interdependence
defined by the physics of the measurement process. For monostatic radar, in which
the transmitter and receiver are co-located, the cross-polarization terms are equal,
Suo(f) = Sun(f) [46, 42, 13]. Additionally, if the scattering matrix for an object
at a particular orientation is known, then the scattering matrix resulting from the
rotation of the object about the line-of-sight through an arbitrary angle can be found.
To demonstrate this, imagine that the receive antennae consist of a pair of long wires
that are horizontally and vertically aligned. Then rotation of the object about the
line-of-sight through angle § is equivalent to rotation of the antennae through —#.

The scattering matrix resulting from this rotation is given by [46, 42]

Srr(0) Sko(6) | cos@ siné Sin Sho cosf —sinb (3.47)
Sun(0) Sw(8) | | —sinf cosb | | Sur Seo || sin® cos® '

where the explicit dependence on frequency has been suppressed here. Note that,
if circular polarization is used during transmission and reception, then the resulting
scattering matrix is completely invariant to the rotation in question. This can be
seen by noting that for any such rotation, all points on the target retain their range
coordinate, and the restriction to circular polarization guarantees that the strength

of the field impinging on any point on the target is'unchanged. The relationship |
“demonstrated here is used in Chapter 4 to derive a transformation from an arbitrary
object orientation defined by three Euler angles to a pair of angles defining a'class of

range-profile-equivalent orientations.

The use of horizontal and vertical polarization during transmission and re-
ception makes it possible to measure range-profiles for a target over four polarization
channels; let these four signals be denoted as {rpn(t), ay(t), run(t), ruu(t)}. Due to the
equivalence in the scattering matrix shown above, r,(t) = ry(t) so that a complete
characterization of the polarization response of the target is possible by measuring
{ren(t), The(t), 7vu(t)}. The HRR simulator XPATCH provides precisely this type
of data for the target. In the next subsection, we consider application of the con-
ditionally Gaussian model to the case of polarimetric observations, and repeat the
recognition tests to ihvestigate if there is an improvement in performance as a result

of using polarimetric data.
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3.3.2 Extension of Conditionally Gaussian Model

We now consider extension of the conditionally Gaussian model to the case of polari-
metric data. The return in range bin / is now given by a 3-vector of returns for each

of the polarization states,

Tarll]

[l = | ml |- (3.48)

T]l] '
These vectors are stacked to form the new observation vector r,. Conditioned on
knowledge of the target type a and orientation 6, this vector is modeled as complex
Gaussian with mean p,(6,a) and covariance matrix K,(6,a). We continue to model
the returns from different range bins as statistically uncorrelated. Thus the structure
of K, is seen to be block-diagonal, where the 3 x 3 diagonal blocks each represent the

covariance for the measurements in a single range bin,

K1) = E{(r,ll] = el (r5[1] = (1)} (3-49) -

The log-likelihood computation in equation (3.44) is unchanged by the generalization
to polarimetric data, except for this change in the covariance matrix. The imple-
mentation of this log-likelihood expression in our recognition tests will depend on the

structure assumed for K,[l].

Diagonal Polarimetric Covariance

A simple structure that may be assumed for K,[I] is diagonal, implying that the
returns for different polarization states in the same range bin are uncorrelated. This
is a physically inaccurate assumption, as any reflecting surface on the target having
significant extent in both the horizontal and vertical directions will produce both
horizontally and vertically polarized responses. However, it provides a simple way
to extend the recognition tests performed earlier. The results of this extension are
shown in Figure 3.20. Comparison of Figures 3.7 and 3.20 indicates that the inclusion
of data from multiple polarization states resulted in an increase in the log-likelihood
margin for the correct target near the true azimuth angle by approximately a factor
of 2. For three of the panels, corresponding to the observation of the fire truck, the
school bus, and the ml tank model, the inclusion of multiple polarizations had no

significant effect on the performance as a function of azimuth angle. Comparison of
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Figure 3.20: Conditionally Gaussian model log-likelihood functions for four-vehicle
recognition tests using polarimetric data and diagonal polarimetric covariance. In
the upper left panel, the range-profile for the fire truck at 19.95 degrees azimuth
was selected as an observation, and the conditionally Gaussian log-likelihood was
computed for each vehicle for azimuth angles from 10 to 30 degrees. The lower left
- panel shows the result when the observation is the school bus at 25 degrees azimuth.
The two right panels show the results when the observations are each of the two tank
models at 15 degrees azimuth. In each panel, the solid line shows the log-likelihood
for the fire truck, the dotted line represents the m1 tank, the dashed line represents
the school bus, and the dot-dash line represents the t1 tank.




the lower right panels, however, indicates that for observation of the t1 tank, the range
in azimuth over which correct recognition‘ is achieved was decreased by the inclusion
of multiple polarizations, due to the deep trough in the log-likelihood function for the
"1 tank in the vicinity of 18 degrees azimuth. Apparently, this change in performance
was due to variability in the Ah and hv range-profiles for the t1 tank for azimuth

angles near 18 degrees that is not present in the vv range-profiles.

Non-diagonal Polarimetric Covariance

To further investigate the use of polarimetric data, we generalize the model by allow-
ing the hh and vv returns from the same range bin to be correlated. Thus, we now

consider the covariance matrix K,[I] to have the following structure

owmll] O pll]
Kfll=| 0 owll 0 | (3.50)
Pl 0 o,

where oz [l], ro[l], and o,,[] are the auto-covariance terms for the individual polar-

ization states used in the diagonal model above, and

oll] = E{(raall] = sl (runll] = ooll))} (3.51)

is the cross-covariance between the hh and vv returns. A covariance matrix of this
form is proposed in [13] for polarimetric modeling of radar returns from clutter sources
such as vegetation and snow-covered terrain. The model is formulated by applying
a second order Born approximation to the wave equations describing the scattering
behavior for a medium with randomly fluctuating permittivity. The first order terms
in the Born approximation correspond to excitation by the incident wave of a particle
within the medium that directly produces a backscattered radiation. The second
order terms correspond to excitation by the incident wave of a particle within the
medium that produces radiation exciting other particles in the medium that in turn
produce backscattered radiation. This covariance structure is also used in [59, 57, 58]
to investigate speckle reduction and target detection performance in polarimetric SAR
imagery.

We implemented the conditionally Gaussian log-likelihood function (3.44) using
the covariance structure (3.50), and repeated the recognition tests shown previously

under this model. The results of these tests are shown in Figure 3.21. Comparison
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Figure 3.21: Conditionally Gaussian model log-likelihood functions for four-vehicle
recognition tests using polarimetric data and non-diagonal polarimetric covariance.
In the upper left panel, the range-profile for the fire truck at 19.95 degrees azimuth
was selected as an observation, and the conditionally Gaussian log-likelihood was
computed for each vehicle for azimuth angles from 10 to 30 degrees. The lower left
panel shows the result when the observation is the school bus at 25 degrees azimuth.
The two right panels show the results when the observations are each of the two tank
models at 15 degrees azimuth. In each panel, the solid line shows the log-likelihood
for the fire truck, the dotted line represents the ml tank, the dashed line represents

the school bus, and the dot-dash line represents the t1 tank.




of Figures 3.20 and 3.21 indicates that the use of the non-diagonal polarimetric co-
variance resulted in an improvement in performance over the diagonal polarimetric
covariance for each of the four cases. In general, the change had little effect on the log-
likelihood for the correct target, but it resulted in a decrease in the log-likelihood of
the incorrect targets. This is most clearly seen in the lower right panels. In this case,
the log-likelihood for the correct target, the t1 tank, is increased only slightly, whereas
the log-likelihoods for the fire truck and the ml tank are dra.fnatically decreased for
azimuth angles near the truth. As a result, correct recognition is achievable over a
much wider range in azimuth when using the non-diagonal polarimetric covariance as

compared to the diagonal polarimetric covariance. -

3.4 Stochastic Reflectivity Model for Correlated
Range-Profiles

The models for high resolution radar data that were examined in Sections 3.2 and 3.3
assumed that successive range-profiles collected from a given target are statistically
independent. This assumption may not be valid for real HRR data. Consider a mov- _
ing target that is illuminated by a sequence of radar pulses in rapid succession. For
.alrcraft or ground vehicles, the target kinematics must be consistent with an appro-
priate physical model such as Newton’s laws governing motion, so that the sequence
of orientations assumed by the target at the illumination times will be correlated with
one another. If the change in the orientation of the target is small enough between
illuminations, then consecutive range-profiles of the target will likewise be correlated.
The deterministic and conditionally Gaussian models do not allow for the incorpo-
ration of correlated range-profiles into the data likelihood. In this section, we give a
brief outline of a model for range-profiles that attempts to account for this correlation.

There are several possible ways in which a stochastic model for the reflectivity
may be defined. In this section, we describe a model based on a glint plus a diffuse
component. The glint component incorporates the deterministic reflectivity profile as
modeled by signature prediction tools such as XPATCH, while the diffuse component
models the reflectivity as a random process as in the WSSUS model presented in
‘Section 3.1.3 ‘

The reflectivity density of the target at location p is given by

() = c5(p)e*? + cy(p), | (3.52)



where ¢, is a glint component and ¢, is a diffuse or speckle component. The phase
¥ is a random variable with a known distribution that may depend on the angle
between the line of sight and the surface normal at position p. The glint component
is ‘deterministic while the diffuse component is assumed to be a complex Gaussian

random process that is spatially white. That 1s,

E{e(p)} = 0 (3.53)
E{e(p)s(0)} = (p)é(o— ), (3.54)

where I(p) is the scattering function. This model is an extension of the standard
WSSUS model described previously. It follows closely the model described by Shapiro
for laser radar illuminations [69, 68, 70], and is a spatially-varying version of the Rician
model [86)]. '

Note that if ¥ = 0 and ¢, = 0, then this model reduces to the deterministic
model of Section 3.2.1. If ¢, = 0 and ¢, # 0, then the reflections are purely diffuse,

and the received signal is a zero-mean Gaussian random-process.

Let the reflectivity density-function on the surface, ¢(p), be mapped to a reflec-
tivity density-function in three dimensions via multiplication by an appropriate Dirac
impulse function. Denote the resulting density function by ¢(x) in a body-centered

‘reference frame, where x = [zy 2]7. The received signal can then be represe‘ntéd by
s(t:6) = \/Ee [ Sr(pe [ &5 e(x) dxcdf, (3.55)
where S7(f) is the Fourier transform of the transmitted signa.l, and

sin ¢; cos @2
u = | sin¢; sin @, (3.56)

cos ¢;

is the body-centered line-of-sight unit vector. Note that we have suppressed explicit
dependence on the target type a in this formulation. Note also that equation (3.56)
is of the same form as equation (3.16) for the range-spread target model, except that
here the integration of the reflectivity density is performed over the entire target

surface, and c¢(x) is allowed to have non-zero mean.

The covariance function for r(t) depends on the covariance function for ¢(x).

In order to get specific results, we assume that % = 0. Then, the covariance function




depends only on the covariance function for ¢;(x) and hence only on the scattering
function. In this case, the range-profile r(¢) is a complex Gaussian random process

with mean

u(t:68) = /B [ Se(ne=H [ €, (x) dx . (3.57)

The cross-covariance function for a pair of range-profiles r,,, (t) and r,,,(t) is given by

K, (t,t6m,,6m,) = Et/ / St(f)S7(f)el* =11
x/ejif(f“r-f'“'T)xE(X) dx df df’
+Nobm,m, 6(t — 1), (3.58)

where u and u’ are the unit vectors for the two illuminations.

The log-likelihood function for a sequence of range-profiles {ri(t)} may be
derived from (3.58) using the results from Chapter 2 of [87]. This gives a log-
likelihood conditioned on the target type and on the sequence of target orientations:
L(Ry|Ok,a). Note that in the deterministic and conditionally Gaussian models, the
log-likelihood of a sequence of range-profiles equals the sum of the individual log-
likelihoods, whereas in this stochastic model it is crucial to include the terms quan-
tifying the correlation of the sequence. For a single range-profile, the log-likelihood
determined by this model, L(r|6,a), can be used directly in place of the determin-
istic log-likelihood derived in the previous section, for cases in which the glint plus
speckle model is appropriate. To date, we have not implemented this model for the
purpose of comparison of recognition performance with the other models. However,
we anticipate that this model may give better results when applied to real data than
the other models, if the correlation between range-profiles at distinct orientations is

significant.

3.5 Conclusions

This chapter has discussed a number of basic concepts in high resolution radar mod-
eling, and has continued by introducing two candidate models for the range-profile,
and testing the potential for recognition under each model using simulated HRR data.
The various tests considered in this chapter demonstrated successful recognition using
range-profiles simulated by XPATCH under both the deterministic and the condition-
ally Gaussian models. The performance seen under the conditionally Gaussian model




was generally superior to that under the deterministic model, in that the conditionally
Gaussian model provided a log-likelihood margin for the correct target over all other
targets over a wide range of azimuth angles. To extrapolate that recognition from

real HRR data is possible using these models would require establishing a number of

other facts:

e that the behavior seen in this example is reproduceable for other targets at

other orientations,
e that recognition is possible in the presence of noise,

e that recognition is possible when attempting to distinguish between many more

target types, some of which are macroscopically very similar, and

e that real HRR data from a given target are accurately modeled by the output
of XPATCH.

The first two of these items have been investigated on a limited basis, as reported
in Chapter 5, with a generally positive result. The third item could be investigated
given datasets for enough targets, but has not been studied in this thesis. The last
item is indeed the most critical of all, but lies outside the scope of this thesis. The
developers of XPATCH are continuing to refine their product and the target models
to be used with if, in an ongoing'effort to establish the validity of the range-profiles

produced.
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Chapter 4

Orientation Estimation Using HRR
Data |

As discussed in Chapter 3, a significant difficulty encountered in recognition from
range-profile data is the extreme variability observed in range-profiles for small changes .
in target orientation. Our method of dealing with this variability is to jointly esti-
mate the target type and orientation sequence. In this chapter, we consider several
issues that arise when attempting to estimate target orientation from range-profiles.
We begin with an introduction to the representation of orientation in IR® using a
3 x 3 rotation matrix that takes its value in the special orthogonal group SO(3).
We proceed to describe global errors in orientation estimates derived from HRR data
that can arise from target symrhetry and invariance of the data to rotation about
the radar line-of-sight. A method of resolving the rotational ambiguity using linearly
polarized range-profiles is discussed. Performance bounds on orientation estimation
are described in terms of a Hilbert-Schmidt bound on the estimation error, following
the development of these bounds provided in {76]. These bounds are evaluated using
simulated data to compare the performance under the two models for HRR data de-
scribed in Chapter 3 and for two different HRR sensors. We conclude the chapter with .
a discussion of the work by Cutaia [23] and Srivastava [76] incorporating kinematic

priors on aircraft motion into the ATR problem.

4.1 The Rotation Matrix

For an arbitrary object in IR3, the orientation of the object is defined by the relation-

ship between its body axes and some specified set of coordinate axes. For example, in



describing the orientation of aircraft it is customary to define orientation in terms the
rotation necessary to align a set of inertial axes with the body axes of the aircraft [27).
Formally, a rotation in IR® is defined as a linear transformation that preserves the
inner product. Let xp € IR® and x; € IR® be the coordinates of a point on the object

in the body-centered and inertial reference frames, respectively. Then orientation is

defined by the matrix R such that

xg = Rx;. (4.1)

The requirement that rotation preserve inner product constrains R to be an orthog-
onal matrix: '

Ty — w7 ' TR —
Clearly, |R| = £1. In order that R represent the rotation of a solid object in IR3, the
determinant must be positive

IR| = 1. (4.3)

An orthogonal matrix with negative determinant corresponds to the composition of

rotation and reflection about an axis. For example, if the transformation -

1 0 0
0 -1 0
0 0 1

were applied to a left-handed .person, it would leave him right handed. So the ori-
_entation of an object in IR® can be described by a 3 x 3 rotation matrix, which is
constrained to be an orthogonal matrix with determinant 1, also known as a special
orthogonal matrix. The set of 3 x 3 rotation matrices has a group structure [76]; this

group is known as the special orthogonal group 3, and is denoted by SO(3).

It is also the case that the group SO(3) can be identified with the direct product -
of the unit sphere and the unit circle, S? x S [76]. To see this, let the rotation matrix
R have rows ry, Iy, r3. Then the matrix equation (4.2) can be viewed as nine scalar

equations constraining {r;,rs, r3}. From the diagonal we have,

nrl=rrl =rrl =1 ‘ (4.4)

[ez]
[




Thus, each row vector is constrained to the unit sphere. The off-diagonal terms of
(4.2) require _
nry =nr=rrl =0 (4.5)

Suppose r; is chosen to be an arbitrary unit vector. Then r; is constrained to the
great circle orthogonal to r;. Once r; is chosen from this circle, there are only two
unit vectors r; orthogonal to both r; and r,; one is the negative of the other. Of
these two vectors, only one will satisfy |R| = 1.

The parameterization of rotations as elements of SO(3) is extremely useful
from the point of view of modeling rigid target motion, in that [76]

o it provides a simple rule of composition through matrix multiplication,

o it allows for the computation of an average of orientations as the normalized

average of the rotation matrices, and

e it allows for a definition of distance between two orientations in terms of the

Hilbert-Schmidt distance between the rotation matrices.

However, there are other parameterizations. For example, an arbitrary rotation in
IR® can be achieved by rotation about an appropriately chosen axis through an ap-
propriately chosen angle. Additionally, a rotation can be parameterized by three
Euler angles representing the composition of three rotations about the body axes.
In the next section, we make use of the Euler representation to consider a class of

orientations that produce equivalent range-profiles in the case of circular polarization.

4.2 Orientation Invariance of HRR data

Suppose we are given the problem of estimating the orientation of a known object
from a single observation of the range profile. Errors in the estimates result from a
variety of sources. Previous work by Sworder, et al. [82] identifies both local and
global errors arising out of the problem of target identification through matching
a noisy observation with a stored replica, when the data to be compared are 2-D
silhouettes of the target. For range profile data, the problem is analogous. Local and
global errors may arise due to the variability of the range profile with the orientation
of the obJect and the effects of noise in the observations. Later in this chapter we will
consider fundamental limits on estimation accuracy as a result of these errors. Other
types of global errors result from deterministic sources and correspond to the fact
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that different orientations of the target yield equal range profiles under our model.
We use the terms symmetry and ambiguity to describe these deterministic sources
of error. In this section we discuss these errors and justify the dependence of the

range-profile on only two Euler angles.

For this discussion, we will define the geometry of our experiment consistent
with the treatment of rigid body dynamics used in the tracking literature (see Fried-
land [27]). The target can be described by a set of points in one of two spaces: an
inertial frame of reference which is assumed fixed, and a body-centered frame of ref-
erence that is independent of orientation. Each frame of reference is described by
three orthogonal axes with respect to a common origin at the center of the target.
The inertial z-axis is assumed to be the radar line-of-sight; the body-centered z, y,

and z axes point to the front, right side, and bottom of the target respectively.

The orientation of a target is defined by the orientation of its body axes with
respect to the inertial axes. An arbitrary orientation can be described by a set of three
Euler angles (¢, 6,), called roll, pitch, and yaw angles. Previously in this thesis we
have used 6 to denote the complete orientation of the object, but here it represents -
only the pitch angle. For an aircraft target, changing the yaw angle corresponds to
rotating the target about the zp-axis, or rotation in the wing plane. Changing the
pitch corresponds to rotation about the yp-axis, or tipping the nose of the aircraft up
or down. Changing the roll corresponds to rotating about the zp-axis, or rolling the
wings around the nose axis. The Euler angles define an ordered triple of rotations

from the inertial to the body-centered frame of reference as follows:

B Tr
yp | =T | ur (4.6)
zB z7
Tip= Rz(¢)Ry(9)Rz(¢) ’ (4‘7)
where
1 0 0
R:(8) = | 0 cos(¢) sin(¢) . ‘(4.8)

0 —sin(¢) _cos(qS)
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cos(§) 0 —sin(6) v
R,(0) = 0 1 0 (4.9)
| sin(f) 0 cos(9)

[ cos(¥) sin(¢p) 0
R.(¥) = | —sin(¢) cos(z) 0 |. (4.10)
0 0 1

The ordering of the rotations is implied by the above matrix product: yaw then
pitch then roll. This ordering is physically desirable because it guarantees that each
rotation does not affect the previous rotations. For example, consider performing a
pitch followed by a yaw. After the pitch, the wing plane is no longer aligned with
the z;-ys plane. Therefore, the yaw rotation will change the angle between the zg
axis and the z7-y; plane, thereby effectively changing the pitch of the aircraft with

respect to the inertial coordinate system.

Many targets of interest such as aircraft exhibit symmetry with respect to
the body-centered z-z plane. Assume that the reflectivity of the target is given
by the summed contribution of a finite number of scattering sites, and the range
profile results from projection of the individual reflectivities along the line of sight
and sorting into range bins. Under these conditions the range profile will be invariant
to reflection in the inertial z-z plane yielding the potential global symmetry error. In
other words, a symmetric target at a yaw angle of ¢ will have the same distribution
of reflectivity along the line-of-sight as the same target at a yaw angle of —1. In
one of the ATR simulati_ons'described in Chapter 5, an example is shown where
the estimation algorithm produces a global error resulting from target symmetry.
Such errors are unresolvable without including the prior arising from the state space
description of the target kinematics.

Even in the absence of target symmetry, there is a potential for global ambigu-
ity. This is because, if circular polarization is used during transmission and reception,
the range profile is invariant to rotation about the inertial z-axis. The justification
for this invariance can be seen by noting that, under rotation about the z;-axis, all
points on the target retain their range coordinate, any self-shadowing of target struc-
tures in unchanged, and the restriction to circular polarization guarantees that the
strength of the impinging wavefront at any point on the target is also unchanged.
As discussed in Chapter 3, if linear polarization is used, then the range profile is not
invariant to line-of-sight rotation, but the set of range-profiles obtained under any
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two such rotations are deterministically related through (3.47). Global ambiguities
are resolvable using either kinematic information or multiple linear polarizations.
Define an equivalence class to be the set of orientations of a target that produce
identical range profiles under circular polarization. Given an orientation for a target,
other orientations in the same equivalence class arise by rotating about the z; axis.

Since z; is not in general aligned with any of the body axes, a three step process is

employed.

1. Perform a series of rotations about major axes so that the z axis is aligned with
one of the body axes. There are many possible solutions, but we will choose to

simply invert the original rotations T}p.

Ty B T
n | =Tm |y |=|wu (4.11)
z zp 2y ’

2. Perform and arbitrary rotation about the z; axis. Let the angle of rotation be

«. Since the z; and zp axes are now aligned, the necessary rotation is simply

R.(a).
T2 Z1 V Ty
y2 | = Ba(e) | y1 | =Re(a) |y (4.12)
29 21 b44

3. Invert the rotations applied in step 1.

Z3 b)) T .
yva | =T | y2 | = TisR:() | s (4.13)
23 22 K44

The ordering of rotations presented above makes good physical sense. However,
it is possible to achieve all orientations regardless of this ordering. For example,

suppose we chose to perform roll first.

B xr
yg | = Ry(O)R.(¥)Rx(4) | y1 (4.14)
2p 2
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This choice of ordering makes it easy to determine all orientations in an equivalence

class. If we now apply our three step process:

z3 . I .
ys | = By(0)R:(¥)Re(¢)Ro(a) | w1 , (4.15)
zZ3 Zr

Since R;(¢)R:(a) = R;(¢ + ), this equation has the interesting implication
that if we set @ = —¢, the associated equivalence class for each orientation has at
least one member with ¢ = 0. Thus, every equivalence class is uniquely identified
by a pair of angles 8’ and %’ which are the pitch and yaw of that member of the
equivalence class with zero roll. The rotations, in standard order, in equation (4;13)
define an equivalence class. By our previous argument there must be some angle «

and some pair (6',9') such that the following equation is satisfied:

Ry(0)R.(¥')Re(—0) = Ra($) Ry () R (%) (4.16)

The three angles that solve this matrix equation must satisfy each of the nine
scalar equations contained within. However, if we are interested only in the angles
(6',%') that identify the equivalence class for a given orientation, we may consider

the three scalar equations from the first column, which are independent of a.

cos(8")cos(¢") = cos(8)cos(v) (4.17)
—sin(Y’) = —cos(¢)sin(¢) + sin(¢)sin(6)cos(x) (4.18)
sin(8')cos(¥’) = sin(@)sin(v) + cos(¢)sin(0)cos(v)) (4.19)

The unique solution to these equations defines a mapping from a complete orientation
to a pair of angles that identify an equivalence class:

¥’ = arcsin(cos(@)sin(y) — sin(¢) sin(6) cos(x))
(4.20)

sin(¢) sin(#) + cos(¢) sin(6) cos(zb)) _

0 = a.rctan( cos(8) cos(z)
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The set of equivalence classes defined by the two angles (§',%') can be identified with
the unit sphere S2. The points of closure on this sphere correspond to the sets of

orientations for which ¢’ = £7. These two values for ¢’ each define an equivalence

class, regardless of the angle ¢'.

The analysis presented in this section has defined a class of orientations that
produce equivalent range-profiles when circular polarization is used during trans-
mission and reception. This ambiguity may be resolved if tracking information is
available, or if circular polarization is not used. In the next section we investigate
how the deterministic dependence identified in equation (3.47) can be exploited to

resolve the global ambiguity.

4.3 Estimation of Line-of-Sight Rotation Using Po-

larimetric Data

The range-profiles from a target under circular polarization are invariant to rotation
of the target about the radar line-of-sight. This invariance does not extend to the _
case of linear polarization, but the range-profiles resulting from an arbitrary rotation
about the line-of-sight are deterministically related through equation (3.47). This has
the implication that, even for the case of linear polarization, libraries of range profiles
need only be stored over the set of angles (¢’,%’) that define equivalence classes. The
_ range-profiles for any orientation within the equivalence class can be generated on-line

through (3.47). In this section, we consider taking advantage of this deterministic
rela,tionship to estimate the rotation about the line-of-sight, thereby eliminating the
global ambiguity. We thank Paritosh Tyagi for his contribution to the following

derivation.
Let X represent a single-frequency measurement of the scattering matrix for

the target, 4
X = [ Thh Tho J . | (4.21)

Toh Tyy
It is assumed that X represents the measurement when the target assumes a neutral
orientation with respect to the line-of-sight. For consistency with the last section, let
the orientation be given by yaw and pitch angles (¢’,%') with o = 0. Let Y represent
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the measurement obtained for some other rotation a. Then we have,
Yuh  Yho cosa sina Thr Thy cosa —sina (4.22)
Yoh  You —sina cosa Tyh Tyy sina  cosa _

As discussed in Chapter 3, the cross-polarization terms are equal in X and Y.
Let the independent elements of X and Y be arranged into column vectors as

Zhh Yhh
X=| Tpy Y=| ¥ |- 4 (4.23)
xvv yvv

If we carry out the matrix multiplication on the right side of equation (4.22), we find

that y is related to x through

y = A(a) x, (4.24)
where the matrix A is given by
cos’a  sin2a  sinla
A(e)=| —}sin20 cos2a lsin2 [. (4.25)
sinfa  —sin2a cos?a

This matrix has determinant 1, but is not orthogonal. However, the inverse has a

very similar form,

cos’a —sin2a sin®a
-1 . .
A7 (a)=| 3sin2¢ cos2a —1sin2a |. (4.26)
sina  sin2a cos? o

‘Additionally, the matrix A(a) and its inverse may be decomposed as

A(a) = Ajcos2a+ Aysin2a+ Ag (4.27)
A (a) = A;cos2a— A,sin2a+ Az (4.28)
where
b oo -
A = 01 0
40 3



[0 1 o0
A, = | -1 o 1 (4.29)
[0 -10
303
A; = 000
2 0 3

Let the data x be modeled as a 0-mean complex Gaussian random vector with

covariance matrix K. Then y is also complex Gaussian with mean 0 and covariance
K, = A(a) KAT(a). (4.30)

. The log-likelihood for y given « is

K, -y'Kly (4.31)
= —In|K|-y'AT(@)K'A Y (a)y (4.32)

L(yla)

where ' denotes complex conjugate transposition. A necessary condition for the max- -

imum likelihood estimate a,,; is that it must satisfy

L(yle) _ | O (4.33)

Oa
Performing the differentiation, we arrive at

B, sinda + By cos4a + Bssin2a + Bycos2a = 0, (4.34)

where the coefficients are given by

B, = 2yY(ATK'A; - ATK'A,)y (4.35)
B, = 2y'(AJK'A; - ATK'Ay)y (4.36)
B; = y{(ATK A, - ATK 'A,)y (4.37)
B: = yMATK™'A, - ATK 'A,)y. (4.38)

Equation (4.34) may be rre.duced to thé form

Csin(4a + £) = sin 2« (4.39)




3
alpha: radians

Figure 4.1: Plots of sin 2« and 1 sin (4a + %)

where

‘ B+ B} |
C = - TB?TB% (4.40)
¢ = tan™! (-g—:) — tan™ (%:) . (4.41)

The left and right sides of equation (4.39) are plotted in Figure 4.1 for C = 2 and
£ = Z. In general there will be 4 solutions for |C| < 1 and 8 solutions for |C| > 1, only
one of which can be an;. Equation (4.34) can also be transformed into an equivalent

polynomial equation of order four through the substitution
u = sin2a V1 — u? = cos 2a, ’ (4.42)

but this approach does not lead to an analytical solution in the general case. For
a particular instance of y and K, this technique yields four solutions that may be
individually tested for maximizing L(y]a). Alternatively, numerical approaches such
as Newton’s method may be employed to determine the solutions.
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4.4 Performance Metrics for Orientation Estima-

tion

The problem of automatic target recognition has received wide attention in recent
years, and a variety of solutions have been proposed. Many of the techniques using
range-profile data are described in Chapter 2. Given this diversity of approaches, it is
desirable to have a basis upon which various candidate algorithms can be compared.
In Chapter 3, we examined simulated range-profiles for various targets, and observed
that the data exhibited extreme variability for small changes in target aspect angle.
It is in part this observation that has motivated posing the ATR problem in terms of
joint estimation of target type and orientation. Clearly, our ability to recognize targets
from range-profiles will be impacted by the accuracy to which the target orientation
can be estimated from the available data. In this section, we consider performance
bounds on orientation estimation using HRR data. These bounds provide specific
model selection criteria for this problem, and will allow us to evaluate different types

of HRR sensors for their utility in estimating orientation.

The orientation of a target takes its value on a curved space. For a param-
eterization of the orientation in terms of a rotation matrix this space is SO(2) or
SO(3). The question arises as to how one can evaluate estimators on these spaces;
the standard Cramer-Rao analysis assumes that the parameter lies in a patch in R™.
Following closely chapter 9 of Srivastava [76], we consider a Hilbert-Schmidt bound
on the expected error in orientation estimation. This provides a lower bound on the
performance of any estimator using a given set of data. We will restrict our attention
to the case of estimators on SO(2), but the generalization to SO(n) is straightforward

and is given in [76].

To begin the development, we consider a 2 x 2 rotation matrix O(6) € SO(2)
defining the orientation of a target relative to a high resolution radar. For example,
let O define the orientation of a ground target illuminated by an airborne radar
platform. For a fixed elevation angle, § is the azimuth of the target relative to the
radar. The Hilbert-Schmidt norm of O(f) is defined as -

10(®)llxs = ,l > o3 (043)




Because O is a rotation,

ow0=| 7 v | =
and ||O(8)||%4s = 2. Furthermore, for any two rotations O; and Oo,
|01 — Oqllys = 4 —4(cos by cos b, + sinb; sin b,) (4.45)
= 4—4cos(f; —62) (4.46)
= 4-21r(0,07). (4.47)

Thus, the Hilbert-Schmidt norm provides a natural distance metric between elements

of SO(2).

Given a true orientation for the target Oy, and any estimate (5, the squared
Hilbert Schmidt norm |[Osrue — Ol|%s gives a measure of the squared error in the
estimate. Let r denote an observed range-profile from which the estimate O is com-
puted, and let p(r|O) denote the likelihood function for r given O. Also, let p(O) be
the prior on the orientation. A Hilbert-Schmidt estimator is defined as the estimator
that, given r, minimizes the conditional mean under the posterior of the squared

estimation error as defined by the Hilbert-Schmidt norm [76],

Ons = argmin [ |0 - O'|[}5p(O'[r)r(dO), (4.48)
0eS0(2) /SO(2)

where 7 is the base measure on SO(2). As indicated by Srivastava, this estimator is
a minimum mean-squared error estimator with the mean defined using the Hilbert-
Schmidt norm, and it is optimal in the sense that for any estimator, the expected
squared error is lower bounded by the squared error achieved by the Hilbert-Schmidt
estimator [76]. To relate this estimator to conventional notions of mean-squared error,

consider the form for the Hilbert-Schmidt norm-squared given by
|0 — Ol|4s =4 —4cosba (4.49)

‘where 8, is the difference between the true azimuth and the estimated azimuth. Ex-
panding the cosine in a Taylor’s series and retaining terms of order two and lower,

we have
1101 — 02|y s ~ 263. (4.50)

97



Thus, for sufficiently small errors 6,4, the squared error in the Hilbert-Schmidt sense

is twice the squared error in the azimuth estimate 4.
The Hilbert-Schmidt bound on the expected squared error in estimation of a

rotation in SO(2) is defined as [76]
—_ A _ 2
HSB=FE {/50(2) ”QHS OHHSP(Oll‘)’Y(dO)} ,y (4.51)

where v is the base measure on SO(2), and the outer expectation is over the ensemble
of observations r. We will compute this bound as a function of the signal-to-noise ratio
in the observations for different models for range-profiles. This provides a criterion
for model] selection for the problem of orientation estimation. We will also compare
the bounds for different examples of HRR sensors, allowing us to evaluate the optimal
performance achievable using data from each sensor.

The computation of the Hilbert-Schmidt bound involves evaluating the two
expectations given in (4.51). Following the example in [76], we will assume that the
underlying true orientation is fixed, and generate a simulated range-profile for the
target at this orientation. In this case, the outer expectation is approximated by
averaging over multiple realizations of the noise added to form the observations. The
inner expectation over candidate orientations O will be evaluated by numerical inte-
gration. Additionally, we assume a uniform prior p(O).’ With these simplifications,
the algorithm to compute the Hilbert-Schmidt bound is given by Srivastava [76]. The
matrix A is defined as the conditional mean of O under the likelihood function p(r|O)

and is approximated by

T NS10(6:)p(r|O(6:)) :
SF p(elO@) (4.5

A=

where the angles 6; are equally spaced around the circle, §; = -21%‘- The Hilbert-

Schmidt estimate is found by normalizing A to unit determinant, which projects this
matrix into SO(2),

()HS = —A— (4.53)

|A|
The squared error in this estimate is computed using the Hilbert-Schmidt norm-
squared, and the HSB is found by averaging the squared error over multiple realiza-
tions of the noise process.
The Hilbert-Schmidt bound was evaluated using simulated range-profile data
under each of the HRR models discussed in Chapter 3. We thank Matthew Cooper
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Figure 4.2: Hilbert-Schmidt bound on expected squared error in azimuth estimation
for the “M1” tank model viewed at 30 degrees azimuth. The solid line represents
the performance under the deterministic model and the dashed line represents the
performance under the conditionally Gaussian model.

for his extensive work in developing the software that was used in computing the
bounds. For this evaluation, we have used the L-band data from the URISD for
the “M1” tank model. The range-profile for this vehicle at 30.6 degrees azimuth
was selected as the observation. Libraries developed for each of the models were
provided to the algorithm for the purpose of evaluating the likelihood function. The
library for the deterministic model consisted of URISD range profiles for the tank
at 360 discrete azimuth angles equally spaced around the circle. The library for the
conditionally Gaussian model consisted of 240 means and variances computed over
3 degree patches in azimuth. The'pa,tches were equally spaced around the circle,
overlapping neighboring patches by 1.5 degrees. The HSB algorithm described above
was implemented using these libraries. Two hundred independent realizations of the
additive noise were generated for noise variances between 6.25 x 10~¢ and 64 square
meters. The corresponding values for the signal-to-noise ratio vary from -18 dB to 50

dB.

The resulting performance bounds are shown in Figure 4.2. In this figure, a
value of 0 for the HSB indicates perfect azimuth estimation in that the estimate is
‘equal to the truth. A value of 4 for the HSB indicates completely unreliable azimuth
estimation, in the sense that this is the performance that would be achieved on
average for an estimator whose estimates are random with uniform density on the
circle. Note that under both models, nearly perfect performance is achieved for high
signal-to-noise ratios, and the performance degrades rapidly with increasing noise.
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The figure indicates equivalent performance under either model over the en-
tire range of signal-to-noise ratios considered. Based on the results of Chapter 3, we
might expect that the performance under the deterministic model would be better.
The reasoning here is that we observed that the likelihood function under the deter-
ministic model exhibited higher curvature near the true orientation than under the
Gaussian model. Thus, a Cramer-Rao type analysis would indicate that more accu-
rate orientation estimation is possible using the deterministic model. However, we
have only used 360 discrete orientations in evaluating the bound for the deterministic
model, and have therefore significantly undersampled the likelihood functions shown

in Chapter 3.

A second evaluation of the Hilbert-Schmidt bound was conducted to compare
the performance using two different HRR sensors. For one of the sensors, we used
the L-band data from the URISD for the “M1” tank model. These data correspond
to a microwave radar with center frequency 1.5 GHz and bandwidth 739.5 MHz,b
resulting in a range resolution of 20.3 centimeters. For the other sensor, we used the
X-band data from the URISD for the “M1” tank model. These data correspond to a

microwave radar with center frequency 10 GHz and bandwidth 1.4775 GHz, resulting

in a range resolution of 10.15 centimeters.

In this case, both libraries consisted of 360 simulated range—p‘roﬁies for target
azimuths equally spaced around the circle. The deterministic model likelihood func-
tion was used exclusively. The range-profile for a target azimuth of 30 degrees was
selected from each data set as the observation, and the HSB computation was per-
formed using 200 independent realizations of the noise process for variances between
6.25 x 107 and 64 square meters. The corresponding values for the signal-to-noise
ratio vary from -18 dB to 50 dB. The resulting performance bounds are shown in
Figure 4.3. This plot does not show the results for signal-to-noise ratios higher than
30 dB, as the bound for both sensors is zero at these noise levels. The figure indicates
essentially equivalent performance using either sensor, except at very high noise lev-
els where the L-band sensor shows better performance. This example indicates that
the performance is not improved by either the higher bandwidth or the higher center
frequency associated with the X-band sensor. We might expect both of these factors
to affect performance: the bandwidth determines the range resolution and the center
frequency determines the rate at which range-profiles decorrelate for small changes in
orientation. However, the results seen here were compiled for a single target at a fixed

true orientation, and the performance may be different if these parameters are varied.
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Figure 4.3: Hilbert-Schmidt bound on azimuth estimation error for the “M1” tank
model viewed at 30 degrees azimuth. The solid line represents the performance using
simulated data corresponding to an L-band radar, and the dashed line represents the
performance using simulated data corresponding to an X-band radar.

Additionally, we are computing the Hilbert-Schmidt bound using only 360 discrete
orientations in each case, and it was shown in Chapter 3 that many more orientation
samples would be required to accurately reproduce the likelihood function.

The results presented in this section have made use of a fundamental metric
for estimators taking their value on SO(2) or SO(3), the Hilbert-Schmidt bound, to
compare limits on the performance of orientation estimation using two different mod-
els for the same sensor, and two different sensors under the same model. In the first
case, the bound indicated equivalent azimuth estimation performance under either
model. In Chapter 5 results are presented indicating that a conditionally Gaussian
model is more appropriate for ATR. In the second case, the bound did not distinguish
either the L-band or the X-band radar as superior in terms of orientation estimation
performance. Clearly what is needed in both cases is a more extensive analysis that
would consider varying true orientations, and would bound the performance on joint
estimation of orientation and target type. Such analysis comprises a major goal for

future research on this problem.

4.5 Kinematic Priors for ATR

As discussed in Chapter 1, a primary factor making the problem of recognition of
targets from range-profile data difficult is the extreme variability in the observed
data for small changes in target aspect angle. It has therefore consistently been
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our view that observation of a single range-profile is insufficient for recognition, and
this has led us to pose the problem in terms of jointly estimating the sequence of
target orientations and the target type from a sequence of observed range—proﬁles.
Given this framework for the problem, successful recognition is crucially dependent
on a kinematic prior on the orientation sequence that is derived from an appropriate
dynamical model for the target motion. Such a prior is also a crucial element of
the system proposed in [31, 47, 76] for the general multi-target ATR problem. As
demonstrated by Cutaia [23], such a prior can be used to estimate target class directly
from tracking data, where target class refers to a broad characterization such as
“jet fighter” or “large cargo aircraft.” Additionally, a kinematic prior can provide
considerable information about the likely position and orientation for a target at the
time of a future observation. This is the approach used by Srivastava [76], and is
directly applicable to ATR using HRR data. In this section, we discuss the work of
these authors addressing the incorporation of pfior information on target motion into
algorithms for ATR, and go on to discuss the need for kinematic priors to properly

address the problem of recognition from HRR data. -

4.5.1 Recognition Using Kinematic Measurements

Cutaia [23] explores the problem of recognition of aircraft targets by exploiting prior
information on aircraft-class-dependent kinematics. A kinematic model for aircraft
motion is derived from Newton’s second law; this consists of twelve nonlinear differen-
tial equations rela.tiﬁg the positions and orientations of the target and their derivatives
to the forces and torques acting on the target. The model includes aircraft-class-
specific physical parameters that can be used to discriminate targets. These param-
eters such as wing area, weight, and moments of inertia vary by several orders of
magnitude depending on the aircraft class in question. The model is linearized about
an equilibrium condition and decomposed into two systems of differential equations
that separately describe the longitudinal and lateral target motion, respectively. In
the linearized model, the inputs are pilot commands representing deflections of the
control surfaces. These commands take their value from a discrete set that is also
aircraft-class-dependent and are modeled as a Markov chain. The resulting state-
variable model for aircraft motion has the form of a discrete-time jump-linear system.

 Given this model, the tracking problem becomes a conditional-mean state es-

timation problem, and the recognition problem becomes a problem of choosing one
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of N systems that maximizes the posterior probability density conditioned on the
observations. The observations consist of noisy measurements of the aircraft posi-
tion and orientation in an inertial coordinate system, obtained from a tracking radar
and an imaging sensor respectively. The optimal solution to either the tracking or
recognition problem is shown to be intractable, as the posterior probability density
conditioned on the measurements consists of a Gaussian mixture where the number
of member densities grows exponentially with the time index k. Suboptimal solutions
from the literature including the generalized pseudo-Bayesian (GPB) and interact-
ing multiple:model (IMM) algorithms are investigated. Bounds are derived on the
performé.nce degradation resulting from these suboptimal solutions in terms of the
increase in the probability of incorrect recognition, the L, distance between the opti-
mal and suboptimal posterior density functions, and relative hybrid entropy between

the optimal and suboptimal posteriors.

Cutaia presents an aircraft recognition example in which a jet fighter aircraft
performing a 4g turn is to be distinguished from a cargo aircraft performing a 1g turn.
The data used for recognition are noisy measurements of the position and orientation

-for one of the targets. A jump-linear discrete-time system model is developed for
each aircraft; this consists of specifying the set of allowable pilot input states and
the associated input-state transition probability matrix for each aircraft. One of the
two aircraft is selected as the true target, and observations are generated for this
target performing a maximally capable turn. The IMM algorithm is used to track
the target under hypothesis A, that the true target is the jet fighter, and hypothesis
B, that the true target is the cargo aircraft. The simulation results clearly indicate
that acceptable tracking performance is achieved only when the correct target model is
used, and that recognition is possible using the ratio of the conditional log-likelihoods
under each model. This work has demonstrated that, using only tracking information
and a.ircra.ft-clasé-dependent kinematic models, an aircraft can be recognized to the
level of the class, if not to the level of an individual target type. That is not to say,
however, that this work does not have a significant role to play in the general ATR
problem. If the majority of possible target types can be eliminated from consideration
based on kinematic measurements alone, then incorporation of these priors into ATR

systems could significantly improve performance.
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4.5.2 Kinematic Priors in Multisensor ATR

Srivastava [76] extends this analysis by explicitly incorporating geometry into the
ATR problem. Each target in the scene is represented by a CAD model for the target
surface referred to as a static generator. The position and orientation of a particular
target in the scene at a fixed time are represented by the translation and rotation
applied to the associated generator. For ground targets the translation p lies in IR?
and the rotation O lies in SO(2), whereas for airborne targets the translation lies in
IR? and the rotation in SO(3). A dynamic generator is defined as the combination of
the parameters for a particular target in the scene over a time interval: the position
and orientation at the start of the interval, the static generator representing the target
type which remains fixed over the interval, and the position and orientation at the end
of the interval. Rules for concatenation of dynamic generators are established such
that the sequence of positions and orientations produced are meaningful, in that the
position and orientation at the end of each time interval are equal to the position and
orientation at the start of the next interval, and the target type remains fixed. The
resulting concatenated sequence forms a linear graph and represents a target track,
i.e. samples of the target trajectory at discrete times. The complete configuration
space is built in a hierarchical manner from individual tracks by combining tracks over
different target types, different track lengths, and finally differing numbers of tracks
in the scene. A distance metric on the complete configuration space is established so
that the notion of minimum mean square error estimation on this space is meaningful.

A kinematic model for aircraft targets derived from Newtonian mechanics is
also used here. This model is distinct from that used by Cutaia in two important
ways: the equations are not linearized about an equilibrium point, and the input
forces and torques are not modeled in terms of specific pilot commands to the control
surfaces of the aircraft. The model is discretized to yield a set of nonlinear difference
equations relating the positions, orientations, forces and torques at discrete times j,
and the forces and torques are modeled as independent Gaussian random variables.
The resulting discrete-time equations of motion are analyzed to induce a prior on the
future position and orientation of a target, given previous values.

This prior is combined with the data likelihood at the time of the next observa-
tion to provide the posterior. By deriving priors explicitly in IR® x SO(3), the natural
parameter space for the target kinematic state, the range of likely positions and ori-
entations for the target is considerably reduced, thereby reducing the computational

burden required to produce estimates from the observations. These are precisely the
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priors needed to couple into the work comprising this thesis. Srivastava presents two
ATR simulations using the kinematic prior. The first simulation addresses the prob-
lem of joint detection, tracking, and recognition of a single maneuvering target using
data from both a passive, narrowband tracking array and an optical imaging sensor.
The second simulation demonstrates joint detection and tracking of two maneuvering
targets using the same tracking array and two of the imaging sensors, one dedicated

to each of the targets.

4.6 Kinematic Models for ATR Using HRR

The approach to ATR described in this thesis is significantly different from other
| approaches proposed in the literature. A very significant shortcoming of most con-
ventional approaches to the ATR problem in a radar context is that they do not
consider the role that kinematic state estimation has to play in recognition. These
researchers assume that the orientation is known or resort to exhaustive searches over
some range of possible orientations to achieve recognition, but do not take advantage
of the knowledge that the sequence of orientations assumed by the target must be-
consistent with a model for the target motion. In contrast, we maintain that estima-
- tion of target dynamics is required for recognition from range-profiles. The resulting
prior on target motion may not be precisely that used by Cutaia or Srivastava, but
it should be closely related in that it is derived from a Newtonian kinematic model.
An important area of focus during the early part of the research program resulting
in this thesis was a collaborative effort with Srivastava to incorporate range-profile
data into ATR simulations using the kinematic prior described in {76]. One of the
resulting simulations is presented in Chapter 5. A comprehensive simulation demon-
strating joint tracking and recognition from HRR data and using kinematic prior on
the orientations has not been completed, but this is an important area for future
research. }

Both Cutaia and Srivastava focus primarily on the case in which the sensors are
fixed on the ground and the targets are aircraft. The Newtonian model from which.
they derive their priors is appropriate in this context. In the simulations presented
in Chapter 5, we will consider an air-to-air scenario and an air-to-ground scenario.
Defining kinematic priors appropriate to these contexts would require extensions or
simplifications of those described above. In the case of an air-to-air encounter, kine-

~ matic models for both the sensor platform and the target could be developed, thereby
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producing priors on the positions and orientations of both aircraft relative to an in-
ertial coordinate system. This problem can be greatly simplified by assuming that
the sensor platform is equipped with on-board sensors capable of providing accurate
measurements of position and orientation; a Global Positioning System receiver and
a gyroscope, for example. In the air-to-ground context, there is the additional prob-
lem of mapping the kinematic models for aircraft to describe the motion of wheeled
vehicles. The resulting model may be a simplification of the aircraft model to planar
motion in JR?, as suggested by Srivastava. One important feature of the motion of
ground vehicles that is not achievable by most fixed-wing aircraft is the ability to
simply stop moving and start again at unannounced times. Appropriate models for

ground target motion must account for this behavior.

In the simulations presented in Chapter 5, we assume that no information
about target position is available to the estimation algorithm. Thus, the kinematic
models used by Srivastava and Cutaia are not applicable. We have instead chosen
to apply a very simple linear model to each of the Euler angles describing the target
orientation,

6i(t) = g;(t), (454)
where the orientation rates g; are assumed to be slowly varying with respect to the
rate at which range-profiles are collected. It must be noted that we in no way consider
this model to be the “right” model for this problem. The right models are those used
by Srivastava and Cutaia, with the possible extensions to the air-to-air and air-to-
ground scenarios described above. However, this simple model has allowed us to
demonstrate in a simulation environment the potential for joint orientation tracking
and recognition from range-profile data. The model is useful only for those situations
in which the target trajectory through orientation space is sufficiently well-behaved
and the data collection rate is sufficiently high that the variation of the Euler angles |

is approximately linear over the time required to collect a sequence of range-profiles.

To conclude, it is clear that priors on aircraft motion derived from kinematic
models for the targets greatly enhances the potential for recognition. When using
high resolution radar data for recognition of dynamic targets, observation of a single
range-profile is insufficient for recognition. Estimation of a sequence of target orien-
tations and target type from a sequence of range-profiles is crucially dependent on an

appropriate kinematic prior of the variety used by Cutaia and Srivastava.
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4.7 Conclusions

This Chapter has investigated various issues relating to the estimation of target orien-
tation from high resolution radar data. Potential global errors in orientation estimates
derived from range profiles were described. These errors result both from target sym-
metry and from invariance of the data to rotation about the line-of-sight. A potential
technique for resolving the rotational ambiguity using linearly polarized measure-
ments was discussed. Performance bounds on orientation estimation in the form of
Hilbert-Schmidt bounds on the expected estimation error were described, and they
were implemented to compare the performance under two models for HRR data and
two different HRR sensors. Finally,. a discussion of the importance of incorporating
prior information on target motion was given, concluding that such priors can enhance
recognition. In the next chapter, we describe simulations that have been constructed

to demonstrate the potential for joint tracking and recognition using range-profiles.
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Chapter 5
Simulations

In Chapter 1, we introduced a methodology for joint tracking and recognition of mul-
tiple targets using multiple sensors. Rather than developing a system to implement
this methodology in its entirety, we wish to test the potential for orientation estima-
tion and recognition using HRR data. To this end, we have devised three experiments
in which ATR algorithms are tested in a simulated environment. In all cases, we have
made assumptions to simplify the problem being addressed from the general multiple-
target ATR problem presented in Chapter 1. These assumptions allow us to focus on

specific issues relating to HRR data.

5.1 Joint Tracking of Position and Orientation for

a Single Maneuvering Aircraft Target

In our first simulation, we consider the case where it is known a prior: that a single
target of known type inhabits the scene throughout the simulation. The goal is to
demonstrate capabilities for joint Bayesian tracking of position and orientation from
multiple data sets. We implement an algorithm for ATR based on jump-diffusion
processes in this case. This algorithm has been presented previously for ATR with
high-resolution images [48] and for multiple-target direction-of-arrival tracking [78].
The scenario addressed in this simulation differs from the scenario for the general
ATR problem in that a single target is present, the target has been successfully
detected, the target does not leave the scene during the simulation, and the target
type is known. We thank Dr. Anuj Srivastava and Mohammad Faisal for their work

in developing the simulation presented in this section.

108




There are two remote sensors which observe the dynamic target: a low reso-
lution tracking array of passive, narrowband sensors sensitive to the position of the
target but insensitive to the target shape and orientation, and a high resolution radar.
At sampling times, the tracking array produces a complex vector modeled as the su-
perposition of a signal contribution and the surrounding noise [49, 67). In this model,
the signal component is given by the complex product s(t)d(p(t)) where s(t) is the
complex amplitude of the signal wavefront, and d(p(?)) is called the direction or steer-
ing vector encoding the target position p(t) depending on the geometry of the sensor
arrangement [49, 48]. Assuming additive, white, Gaussian noise and deterministic

signal amplitudes the log-likelihood of tracking data, y(1),y(2),..., is

Ly(p(1),.-. Z; lly[i] - d(pl])II*. (5.1)
=

The joint log-likelihood is formed as the sum of this expression and the HRR data
log-likelihood derived earlier, resulting in a natural fusion of information collected at
different sensors. For this simulation, we have implemented our algorithm using the
HRR log-likelihood function for the deterministic model in (3.40). In a simulation
presented later in this chapter, we use the log-likelihoods derived from both the deter-
ministic model and the conditionally Gaussian model, and compare the performance

_under each.

The rigid body dynamics governing target motion are analyzed to derive a prior
probability density on tracking and recognition parameters. This prior, combined
with the likelihood of data collected at sensing platforms, provides the posterior
likelihood for Bayesian optimization. Following standard rigid body analysis [27],
the translational velocities v(s) = [v1(s) v5(s)vs(s)]” and orientation rates q( ) =
[91(5) g2(s) ga(s)]” satisfy the following set of differential equations:

01(s) — g3(s)v2(s) + g2(s)va(s) = fu(s)
b2(s) + ga(s)va(s) — qi(s)vs(s) = fa(s)
v3(s) — g2(s)vi(s) + qu(s)va(s) = fa(s)

Ligi(s) = (I — Is)qa(s)gs(s) = Ti(s)

Lga2(s) — (Is — I)q1(s)ga(s) = Tafs)
I3gs(s) — (I — I)ga(s)qu(s) = Ts(s),
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where f(s) € IR® is the vector of forces driving the target and I'(s) is the vector of
applied torques. Assuming a statistical model on the forcing functions, the statistics
on target positions were derived using the differential operator associated with these
equations [48]. A jump-diffusion algorithm combining the kinematic prior obtained
from (5.2) and the tracking data log-likelihood in (5.1) was derived for the case where
a high resolution imaging sensor is used in conjunction with the cross-array tracking
sensor [48]. In this simulation, we have adapted the algorithm to incorporate HRR
data in place of the imaging data. Estimation of target orientation from HRR data
proceeds according to a deterministic search through a library of simulated range-
profiles as given below. A target of interest was selected (the X29 aircraft) and
range-profiles were generated off-line for this target at 412 discrete aspect angles using
XPATCH. These data are referred to as the library. The aspect angles were chosen
so as to be approximately equally spaced around the sphere, with approximately 10
degrees separating nearest neighbors. Ounly the range profiles corresponding to the
vv polarization state were retained for use in this simulation. Note that although
the rotational invariance described in Section 4.2 does not strictly apply to the case
of linear polarization, for the phrposes of this simulation our library contains range-
profiles for orientations parameterized by only two Euler angles, namely yaw and
pitch. An orientation described by two Euler angles in this manner is hereafter
referred to as the target aspect angle. As discussed below, we avoid the problem of
estimating a complete target orientation described by three Euler angles from data

compiled for only two such angles by assuming knowledge of the target roll angle.

At each time step when orientation estimation is to be performed, the true
orientation is obtained from the flight path and converted to the associated aspect
angle through (4.20). The range-profile corresponding to the library entry nearest the
true aspect angle is selected as the observation, with no additive noise. The initial
orientation estimate is set equal to the true orientation at the first time step, and equal
to the previous estimate thereafter. This corresponds to a simplified dynamics model
in which the orientation is constant between successive illuminations. Refinement
of orientation estimates is performed by a deterministic walk on the likelihood grid.
From the initial estimate, the algorithm examines the nearest neighbor library entries,
and proceeds to the aspect angle of highest likelihood. This process is repeated for
a fixed number of steps, or until a local maximum is reached. The aspect angle at
which the algorithm terminates is considered the estimate. In order to convert this
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Figure 5.1: Results of orientation estimation for simulation 1. In the left panel, the
sequences of true yaw angles and yaw estimates are plotted. The right panel shows
similar plots for the pitch angles.

aspect angle back into a complete orientation estimate, we assume knowledge of the

true roll angle at each time step.

The algorithm has been implemented on a networked system of a DECmpp
128 x 128 massively parallel processor for array data simulation, computations, and
efficient loading and processing of the range-profile library, and a Silicon Graphics
workstation for simultaneous display of results. The original flight path was generated
using a flight simulator package to provide the parameters for data simulation, the
path sampled 1200 times at the sampling rate of 30/sec. Each sample is the true
position and orientation state of the aircraft at the sampling instant. At each sampling
time a new data set is added and the simulation performed over a new posterior on

an enhanced parameter space.

The results of this simulation are shown in Figure 5.1. In the left panel of
this figure, the sequence of true yaw angles is shown by a smooth curve, while the
sequence of yaw estimates appears as a staircase approximation to this curve. The
right panel shows similar plots for the pitch angles. Note that no results are given
for tracking of the target position. The algorithm used for position tracking for this
simulation is identical to that presented in [48], and the results obtained here were
consistent with those results. The large discontinuities in the sequences of orientation
estimates and the error in these estimates are a direct result of the extremely coarse
orientation grid used in this simulation. This figure is also indicative of the general
success of this simulation; as long as the initial orientation estimate at each time
step was within 10 to 20 degrees of the truth, the algorithm generally converged to
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the maximum-likelihood estimate. It should be noted that this success is critically
dependent on the fact that the observed range-profile is always identical to one of
the library entries. It is unlikely that the algorithm would succeed if the observations
were range-profiles generated for orientations not in the grid.

This simulation demonstrates the potential of our methodology for joint track-
ing the position and orientation of a dynamic aircraft target observed by ground-based
radar systems. However, due to the coarse orientation grid used here, errors in yaw
and pitch estimates are often 5 degrees or more. Additionally, the algorithm for ori-
entation estimation used in this simulation takes no advantage of the knowledge that
the sequence of orientations assumed by the target should be consistent with Newto-
nian mechanics, as given by (5.2). The analysis of simulated HRR data presented in
Chapter 3 has indicated that, when using the deterministic model, orientation esti-
mates accurate to within 1 degree or less may be required for acceptable recognition
performance. In our next simulation, we incorporate a much finer grid spacing in
orientation, as well as a simple dynamiéal mode] that corresponds well with the dy-
namics of our simulated target, thereby allowing for much more accurate estimation

of yaw and pitch angles and for successful recognition using HRR data.

5.2 Joint Orientation Estimation and Recognition

for a Closing Aircraft Target

We have developed a computer simulation in which an unknown aircraft target is
encountered by an airborne sensor platform at long range. It is assumed that detection
and tracking of the position of this target are performed by an external system.
A sequence of simulated range-profiles is observed as the target moves relative to
the sensor. The goal is to estimate the target orientation during each simulated
illumination and to determine the target type. The target type is constrained to
be one of two possible candidates, namely either the F-117 or X-29 aircraft. The
target and sensor follow straight-line flight paths at constant velocities and maintain
roll angles of 0 degrees (level flight) during the encounter. These assumptions imply
that the orientation of the target is completely specified by its yaw and pitch angles
relative to the sensor. We further assume that the target is nominally nose-on to
the sensor, such that the yaw and pitch angles lie between 10 degrees during the

encounter. The reasons for choosing this particular scenario include:
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e The focus here is on the simulated range-profiles and their utility in estimat-
ing orientation and identifying targets. Thus, other factors such as aircraft

dynamics have been greatly simplified.

o The scenario is representative of a typical air-to-air encounter of an unknown

target.

o The limited extent of possible aircraft orientations allows for development of a
library of range-profiles computed on a fine grid in orientation, while keeping
the total size of the library reasonable. '

We have developed an estimation algorithm to operate under this scenario.
We thank Mohammad Faisal for his assistance in developing the simulation presented
here. Libraries of range-profiles for the F-117 and X-29 aircraft were simulated via
XPATCH at a discrete set of orientations for yaw and pitch angles each varying
between -10 and 10 degrees. The yaw angle was sampled uniformly at 0.2 degree
intervals, and the pitch angle was sampled at a yaw-dependent interval chosen to
keep the arc length on the unit sphere between neighboring pitches approximately
0.2 degrees. , v

Values were chosen for the initial position, initial orientation, and vvelocity
of the target, and were used to compute a sequence of true orientation states for
the target during the simulation. A true target type was chosen, and XPATCH
was used to simulate the sequence of observed range-profiles corresponding to the
sequence of true orientations. Thus, in contrast to our first simulation, the libraries
and observations used here were computed independently.

In the previous simulation, estimates of target orientation were computed indi- -
vidually for each illumination, with the final estimate from the previous illumination
providing an initial estimate for the current illumination. This technique can be
problematic, as once the algorithm produces a significant error in the estimated ori-
entation, all future estimates will be affected by this error. The dyna.mics-based prior
presented previously addressés this problem by constraining estimates of target posi-
tion and orientation over time to be consistent with Newtonian mechanics, but also
requires that position and orientation be estimated jointly. In this simulation, we
estimate orientation and target type only, and we have therefore chosen a very sim-
ple dynamical model to relate past and present orientation estimates; namely, that
the yaw and pitch angles defining the aircraft orientation vary linearly over a sliding

window in time. Thus, a sequence of orientations over the window are completely
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determined by the yaw and pitch angles at the window endpoints. The window length

W is specified in terms of an integer number of illuminations (e.g. W = 32). .

The estimation algorithm proceeds as follows. After loading range-profile li-

braries for both aircraft and the first W observed range-profiles, initial estimates of

target type and the first W orientations are generated. This is accomplished in several

steps.

1.

o

A global search through the range profile library for the F-117 is performed,
and the likelihood of observation number 1 is computed for each candidate
orientation. The ten orientations having the highest computed likelihood are
retained. This process is repeated using observation number W, producing 100

pairs of candidate orientations at the window endpoints.

A global search through this list is conducted. For each entry, linear inter-
polation is applied to yaw and pitch estimates from the window endpoints to
generate a sequence of orientation estimates over the window. Each of these es-
timates is replaced by the nearest orientation that is a grid point in our libraries.
A sequence of range profiles corresponding to the sequence of grid points is ex-
tracted from the library. These data and the sequence of observations are used
to compute the joint likelihood of the sequence of grid points corresponding to
the current list entry, and the process is repeated for the entire list. The list en-
try yielding the highest joint likelihood is selected as the sequence of orientation

estimates, given that the target type estimate is the F-117.

The entire process is repeated using the range-profile library for the X-29, pro-
ducing a second estimate of the orientation sequence and target type. Of these
two, the estimate yielding the higher joint likelihood is selected as the final

estimate of target type and orientation sequence for the first W illuminations. '

Future orientation estimates are generated through a local search.

1.

The window endpoints are shifted by one illumination, and initial orientation
estimates at the new endpoints are found by linear interpolation from the pre-

vious estimates. These estimates are replaced by their nearest grid points.

The set of nearest neighbors to each endpoint estimate is found. Our grid is
nearly rectangular, so that in most cases, each endpoint has four neighbors,

found by incrementing or decrementing the yaw or pitch.
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Figure 5.2: Illustration of local search algorithm. The orientation estimates at the
window endpoints are constrained to the grid values for which our libraries contain
range-profiles. The current estimates are each represented by a filled circle and their
neighbors are each represented by an “X”. For each of the 25 pairs of candidates, the
joint likelihood of the current sequence of observations is evaluated, and the pair of
maximum likelihood is selected as the updated estimate. This process is repeated
until a local maximum of the joint likelihood surface is reached.

3. Consider the current estimate and its neighbors as candidate orientations, so
that we have five candidates at each endpoint or 25 possible pairs of candidates,
each defining an orientation sequence over the window. These candidates are
illustrated in Figure 5.2. The joint likelihood of each sequence is evaluated,
using the current target type estimate, and the maximum-likelihood candidate
pair is selected as the updated estimate. This process is repeated until the
new estimate 1s equal to the current estimate. In this manner, the algorithm
will proceed from the initial estimates produced by linear interpolation to the

nearest local maximum of the joint likelihood surface.

Recognition is performed during the initialization process described above, in
the sense that a global search is performed through the libraries for both target types.
To allow for the possibility that this search may have produced the incorrect target
type, the algorithm considers the hypothesis that the alternate target type is correct,
and evaluates the joint likelihood of the current orientation estimates under this
hypothesis. The local search is again implemented to find the nearest local maximum
of the likelihood surface. The joint likelihood of the new orientation sequence and
the alternate target type hypothesis is compared to that of the current estimates,
and if the new likelihood is greater, then the target type estimate is changed to the
alternate target type, and the current orientation estimates are replaced by the new
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Figure 5.3: A frame of graphics output captured from simulation 2. In the right
panel, the true sequence of yaw and pitch angles are shown in gray, with yaw and
pitch estimates for the first 32 illuminations shown in black. The first 32 observed
range profiles are shown in the upper left panel, and the sequence of library elements
corresponding to the sequence of orientation estimates are shown in the lower left

panel. The center panel displays a model of the true target type at the true orien-
tation above a model of the estimated target type at the estimated orientation, for

illumination number 16.

sequence. This process is invoked at regular intervals defined by an integer number
of illuminations.

The software implementation includes graphics routines for visualization of the
data and true and estimated parameters. A single frame of graphic output illustrating
the state of the algorithm immediately following the initialization procedure described
above is presented in Figure 5.3. In the right panel, the gray curves indicate the
true sequence of yaw and pitch angles assumed by the target during the simulation,
while the black line segments indicate the yaw and pitch estimates for the first 32
illuminations. A sequence of 32 observed range profiles and the library elements
corresponding to the current orientation estimates are displayed in the left panel.
The center panel contains a rendering of the true and estimated target types at the

true and estimated orientations, for illumination number 16.

True orientation states for the simulation were generated as follows. The target
begins the simulation at a range of 12.5 miles, at a yaw angle of -4 degrees relative
to the line-of-sight of the radar, and at a pitch angle of 4 degrees. The aircraft flies
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Figure 5.4: Results of orientation estimation for simulation 2. No initialization or
recognition were performed in this case. In the left panel, the sequences of true yaw
angles and yaw estimates are plotted. The right panel shows similar plots of the pitch
angles.

along a straight line at 500 miles per hour for 10 seconds. The orientation angles are
computed at 200 sample times over the duration of this flight.

In our first test of this simulation, we provided the algorithm with the true
target type and the true target orientations for the first 32. observations (the initial-
ization procedure and recognition step were not performed). The results of this test
are presented in Figure 5.4. The left panel of this figure shows the sequence of true
yaw angles and the resulting estimates. The estimates shown here are taken from the
midpoints of the line segments defining the final estimates of the orientation sequences
for each window position. The right panel shows similar plots for the pitch angles.
As in simulation 1, the angle estimates appear as a staircase approximation to the
smooth curve depicting the true angles. The discontinuities in the sequences of esti-
mated angles and the resulting estimation error are small as compared to simulation
1 due to the fine orientation grid used here.

In a second test of our algorithm, the initialization procedure and recognition
step have been included. Results from this test are shown in Figure 5.5. As before,
the left panel shows the the true yaw angles and estimates, and the right panel
shows the true pitch angles and estimates. It is clear from the left panel that our
initialization procedure produced a very significant error in this case. This error is
interesting in that it results from a symmetry present in our libraries, which in turn
results from a physical symmetry of the aircraft. The F-117 and X-29, like most
aircraft, exhibit left-right symmetry, or symmetry with respect to the z-z plane in
body-centered coordinates. Thus, any such aircraft rotated through a yaw angle
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Figure 5.5: Results of joint orientation estimation and recognition for simulation 2.
Both initialization and recognition were performed in this case. In the left panel, the
sequences of true yaw angles and yaw estimates are plotted. The right panel shows

similar plots of the pitch angles.

of ¥ will have the same arrangement of reflectivity versus range as when rotated
through a yaw angle of —. XPATCH produces nearly identical range profiles at these
two orientations, resulting in a symmetry in our range profile libraries, and thereby
resulting in the orientation ambiguity encountered here. Note that this ambiguity
is present throughout the simulation in that the estimated yaw angle is consistently
close to the negative of the true yaw angle. Such ambiguities are resolvable if tracking
information is available, which is not the case here. Note that we have conducted
other tests of this algorithm in which a sign error in the yaw estimate did not occur.

Recognition results for this simulation were excellent. The algorithm consis-
tently picked the correct aircraft type during the initialization procedure. Also, each
time the algorithm considered the hypothesis that the alternate target type was cor-
rect, this hypothesis was rejected. Such a result was expected in this case, as the
library range profiles for the two aircraft exhibited observable differences over the en-
tire range of possible orientations, for example in the number and location of peaks.

This simulation has demonstrated the potential for successful joint orientation
tracking and target recognition using simulated range-profile data, using the deter-
ministic model log-likelihood (3.40) and a simple constant orientation rate dynamical
model for the target motion. The simulation provided generally positive results for
orientation tracking and very positive results for recognition in simplified ATR envi-
ronment in which the target orientation is restricted to a 20 x 20 degree orientation
window, and the target type is limited to one of two candidates. Further improve-

ments on this simulation would include considering more candidate target types,
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incorporating the conditionally Gaussian model for the range-profiles, and testing
the performance of the algorithm when the observations include additive noise. All

of these items are included in our third simulation, described in the next section.

5.3 Joint Orientation Tracking and Recognition of

Ground Targets

The simulations presented in the previous section demonstrated the potential for
jointly estimating target type and a sequence of target orientations from a sequence
of simulated range-profiles. While demonstration of this potential is of interest, the
simulations have not presented results quantifying the performance of the algorithm
in terms of the rate of successful recognition or the accuracy of orientation estimates
generated, nor has there been any consideration of the effect of additive noise on
estimation performance. Also, in both simulations described earlier in this chapter,
the deterministic model for range-profiles was used exclusively, largely because these
simulations were developed prior to conducting the investigation of the conditionally
Gaussian model presented in Chapter 3. The simulation presented in this section
attempts to address each of these issues. Specifically, for the simplified ATR scenario
described below, we investigate the performance of an algorithm for joint orientation
tracking and recognition from simulated HRR data, consider the effect of noise on
performance, and implement the algorithm under both the deterministic and the
conditionally Gaussian models, to determine if the promising results obtained for the
conditionally Gaussian model as presented in Chapter 3 are reproduced when using
‘this model for ATR. We thank Zoltan Bekker for his assistance in developing these
simulations.

For these simulations, we consider joint tracking and recognition of ground
vehicles from an airborne sensor platform. The data available for estimation of target
orientation and recognition are sequences of simulated range-profiles drawn from the
University Research Initiative Synthetic Dataset, described in Section 3.2.1. The tar-
get is a rigid body that moves along flat ground in a straight line at constant velocity.
The sensor platform flies in a straight line at constant velocity, and is assumed to
maintain a constant elevation angle with respect to the target. A high resolution
radar sensor mounted on the platform remains pointed at the target throughout the

encounter. Given these assumptions, the target orientation 8 is determined solely by
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the azimuth angle of the target relative to the sensor, which takes its value on the
circle. For the development of our estimation algorithm, we make the assumption

as in the previous simulation that the azimuth angle varies linearly over a sliding

window in time.

5.3.1 Observations

A particular instance of our simulation is defined by selecting one of the four vehicles
{fire truck, school bus,m1 tank,tl tank} as the true target, selecting a fixed elevation
angle and frequency band for the simulation, and choosing values for the parameters
governing the relative motion of the target and sensor. These parameters are used
to compute the azimuth angle of the target relative to the sensor at the observation
times, which are spaced at regular intervals over the duration of the simulation. The
sequence of azimuths is used to draw a corresponding sequence of range-profiles from
the appropriate data set in the URISD. The observations r(t) are formed as the
sum of these range-profiles and a sequence of complex, Gaussian distributed pseudo-
random numbers with mean 0 and variance Ny. The noisy observations are read from

a file by our algorithm at the start of the simulation.

5.3.2 Libraries

A database is developed for each target that characterizes the set of range-profiles for
that target at a discrete sampling of the possible azimuth angles. Each database is
referred to as a library. When using the deterministic model, the libraries are created
by selecting a fraction, typically one-half or one-fourth, of the range-profiles from the
dataset from the URISD for each target at a fixed elevation angle and frequency band.
When using the conditionally Gaussian model, the set of possible azimuth angles is
~ divided into overlapping pa,tches,‘and the libraries consist of mean range-profiles and
range-bin variances computed from all of the range-profiles in each patch. The patch-
size is arbitrarily chosen to be three degrees for the L-band data and one degree for
the X-band data. Each patch overlaps with its neighbors by one-half of the patch size.
The estimation algorithm searches through the libraries, seeking a sequence of library
entries that maximize the joint likelihood for a particular sequence of observations.
When using the conditionally Gaussian model, if the likelihood of observing a given
range-profile is maximized by a particular azimuth patch, then the azimuth estimate
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is set équa,l to the azimuth from the center of the patch. The nature of our search

algorithm is detailed below.

5.3.3 Estimation Algorithm

The estimation algorithm we have developed for these simulations is based largely
on our assumption that the azimuth varies linearly over a time window of length
W, where W is an integer number of illuminations of the target. This constraint
implies that a sequence of W azimuth estimates is determined by the estimates at the
endpoints of the window. The estimation algorithm is initiated by conducting a series
of global searches through the libraries for each candidate target to determine the
vehicle and the azimuths at the window endpoints that maximize the joint likelihood
for the first W observed range-profiles.

Future azimuth estimates are generated through a local search. The window
endpoints are shifted by one illumination, and initial azimuth estimates at the new
endpoints are found by linear interpolation from the previous estimates. Each of
the endpoint estimates is constrained to be one of the discrete azimuths for which
our libraries contain entries, and ‘each estimate has two nearest neighbors in the
libraries. Consider the current estimate and its neighbors as candidate azimuths, so
-that we have three candidates at each endpoint or nine possible pairs of candidates,
each defining a linear orientation sequence over the window. The joint likelihood
of each sequence is evaluated, using the current vehicle estimate, and the maximum
likelihood candidate pair is selected as the new estimate. This process is repeated
until the new estimate is equal to the current estimate. In this manner, the algorithm
will proceed from the initial estimates produced by linear interpolation to the nearest
local maximum of the joint likelihood surface.

Recognition is performed during the initialization process described above, in
the sense that a global search is performed through the libraries for all four vehicles.
To allow for the possibility that this search may have produced the incorrect vehicle
estimate, the algorithm considers the hypothesis that an alternate vehicle is correct.
The joint likelihood of the current azimuth estimates is computed for each alternate
vehicle. The local search is again implemented to find the nearest local maximum of
the likelihood surface. The joint likelihood under each hypothesis is computed, and
the most likely is selected as the new estimate. This process is invoked at regular

intervals defined by an integer number of illuminations. Given that our algorithm
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Figure 5.6: Data from a typical realization of simulation 3. The left panel shows a
sequence of 20 noise-corrupted L-band range profiles for the “m1” tank model. The
signal to noise ratio is approximately 22 dB. The right panel shows a sequence of 20
library entries corresponding to our sequence of azimuth estimates at the observation

times.

may produce different estimates of target type over the course of a single simulation,
we define correct recognition as the case where the algorithm selects the correct
vehicle during the initialization process, and maintains the correct vehicle estimate

throughout the simulation.

5.3.4 Simulation Results

We have implemented our algorithm for a particular encounter scenario, using both
the L-band and the X-band data from the URISD, and for a range of values of the
noise variance Ny. The scenario parameters were as follows. The target is the “m1”
tank model. The target begins the simulation 500m west and 1000m north of the
sensor, with an initial azimuth angle of 220° relative to the sensor, and moves in a
straight line at 17.78m/s. The sensor moves north at 88.9m/s maintaining a constant
elevation angle of 10° between itself and the target. The sensor illuminates the target
200 times at 50ms intervals.

Data from a typical realization of this scenario are shown in Figure 5.6. The
left panel shows a sequence of 20 noise-corrupted L-band range profiles for the “ml1”
tank model. The right panel shows a sequence of 20 library entries corresponding to
our sequence of azimuth estimates at the observation times. For this example, the
noise variance is set to a value of 0.6 square meters. Let the signal to noise ratio be

defined as the ratio of total signal energy to noise power. Because the energy in the
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Figure 5.7: Estimation results from a typical realization of simulation 3 using L-
band data. The true sequence of azimuth angles assumed by the target appears as a
smooth curve, while the sequence of estimates appears as a jagged approximation to
this curve. Note that both the true vehicle type and estimated vehicle type are the
“m1” tank model, indicating successful recognition.

-signal may change drastically over the course of the simulation, the SNR varies as
well. The SNR for the data depicted in Figure 5.6 is approximately 22 dB.

The performance of our algorithm under the deterministic model for this ex-
ample is shown in Figure 5.7. The true sequence of azimuth angles assumed by the
target appears as a smooth curve, while the sequence of estimates appears as a jagged
approximation to this curve. The two traces are difficult to distinguish in the figure
as a result of the high quality of the azimuth estimates generated in this case. Note
that both the true vehicle type and estimated vehicle type are the “m1” tank model,
indicating successful recognition. The performance shown here is typical for our al-
- gorithm when using L-band data at this noise level, in that the sequence of azimuth
estimates tracks the true azimuth sequence very closely, and the vehicle is correctly
recognized throughout the simulation.

Performance Analysis: L-band

A more extensive examination of the performance of our algorithm was conducted
by repeating this simulation 500 times using independent realizations of the pseudo-
random noise sequences. Performance measures were computed over the 500 runs
in terms of the fraction of runs in which correct recognition was achieved, and the
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Figure 5.8: Performance measures for simulation 3 using L-band data. Shown in
the left panel is the Hilbert-Schmidt norm-squared on azimuth estimation error as
a function of the noise variance. The center panel shows the fraction of simulation
runs in which correct recognition was achieved. The right panel shows the angular
estimation error for the case where the correct vehicle type is assumed known. In each
panel, the solid line indicates the performance under the deterministic model, and the
dashed line indicates the performance under the conditionally Gaussian model.

Hilbert-Schmidt norm of the error in the azimuth estimates. This process was re-
peated for noise variances between 0.6 and 2.4 square meters, under both the deter-

ministic model and the conditionally Gaussian model.

As discussed in Chapter 4, a performance measure for estimators in which
the parameter is a rotation that takes its value on SO(2) or SO(3) is given by the
Hilbert-Schmidt norm. For azimuth estimation on the circle, the square of the Hilbert-

Schmidt norm is equal to
4 — 4 cos(8a), (5.3)

where 6, is the difference between the true azimuth angle and the estimate. We com-
pute the Hilbert-Schmidt norm-squared for each azimuth estimate, and this perfor-
mance measure is averaged over the number of estimates generated in each simulation
run and over the 500 runs at each noise level to generate an estimate of the expected
estimation error.

The results of these simulations for L-band data are shown in Figure 5.8. In
the left panel of the figure, the Hilbert-Schmidt norm-squared on azimuth estimation
error is plotted as a function of the noise variance. The center panel shows the
fraction of simulation runs in which correct recognition was achieved. The right
panel shows the angular estimation error for the case where the correct vehicle type
is assumed known. In each panel, the solid line indicates the performance under
the deterministic model, and the dashed line indicates the performance under the

conditionally Gaussian model.
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The figure indicates generally good recognition performance, in that the al-
gorithm achieved correct recognition better than 90 percent of the time for noise
variances up to 1.4 square meters, and better than 70 percent correct recognition
for all noise variances, under either model. Also, the Hilbert-Schmidt norm-squared
on the angular estimation error is consistently less than 1.6. To interpret this result,
consider that the Hilbert-Schmidt bound for the worst-case estimator has a value of 4.
If we assume that the targets are physically asymmetric objects, then the worst-case
estimator randomly selects the azimuth estimate with uniform probability density

over the circle.

For this simulation, the performance under the conditionally Gaussian model is
approximately equivalent to that under the deterministic model. Such performance
is achieved by the Gaussian model while using considerably smaller libraries. For
L-band data, the deterministic model libraries each contain 1200 complex-valued
range-profiles, whereas the Gaussian model libraries contain 240 complex-valued mean
range-profiles and real-valued range-bin variances. Thus the total size of the L-band
libraries for the Gaussian model is smaller than those for the deterministic model by

a factor of 3%.

The plots of Figure 5.8 also possess features that indicate less than complete
confidence in the results obtained. For example, the left panel shows that the azimuth
. estimation error was not a strictly increasing function of the noise variance as we
would expect. Also, for small noise variances, the azimuth estimation error is actually
larger for the case where the correct target type is assumed known. We attribute both
of these counterintuitive results to the fact that the data shown in the figure were

compiled using only 500 runs of our simulation.

It must be noted that the performance of our algorithm is critically depen-
dent on the choice of the size of the sliding window over which the linear azimuth
dynamical model is enforced. For optimal recognition performance in the presence
of noise, longer windows are desired. For the deterministic model, the log-likelihood
for a sequence of observations is given by the sum of the individual log-likelihoods.
Therefore, if the azimuth estimates are accurate, the use of longer windows increases
the log-likelihood margin between the correct target and all other targets. However,
because the true azimuth sequence is not linear, the use of longer windows increases
the azimuth estimation error over the length of the window. This establishes a funda-
mental performance trade-off for the choice of this parameter. The results presented
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Figure 5.9: Performance measures for simulation 3 using X-band data. Shown in
the left panel is the Hilbert-Schmidt norm-squared on azimuth estimation error as a
function of the noise variance. The center panel shows the fraction of simulation runs
in which correct recognition was achieved. Note that correct recognition is achieved
only when the algorithm produces the correct vehicle estimate throughout the entire
simulation. The right panel shows the angular estimation error for the case where
the correct vehicle type is assumed known. : ‘

above were obtained after trial-and-error suggested a window length of 20 observa-

tions provided the best performance when using the L-band data.

Performance Analysis: X-band

The simulations described above were repeated for identical scenario parameters using
the X-band data from the URISD. The simulations were run 500 times at noise vari-
ances between 0.6 and 12.4 square meters. The recognition rates and Hilbert-Schmidt
norms on the azimuth estimation errors were computed as before. The results of these
simulations are shown in Figure 5.9. It is clear from the figure that the performance
of the algorithm under the deterministic model suffered greatly when using X-band
data. The left panel indicates that the azimuth estimation error exceeded the Hilbert-
Schmidt bound for the worst case estimator at all noise variances tested. The center
panel shows that correct recognition was never achieved for more than ten out of the
500 runs at any noise variance. Recall that correct recognition is achieved only when
the algorithm produces the correct vehicle estimate throughout the entire simulation.
The right panel indicates good performance in terms of azimuth estimation error at
all noise levels, when the correct target type was assumed known. The poor per-
formance observed here can be understood be examining Figure 3.5. The width of
the central peak in the log-likelihood function is less than 0.1 degrees, and outside of
this peak the log-likelihood for an incorrect target is larger than that for the correct
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target. Thus, if the algorithm makes even a small error in the azimuth estimate, it
will change the target type estimate, resulting in incorrect recognition.

It is also clear from the figure that the performance using X-band data was
very significantly improved under the conditionally Gaussian model. A recognition
rate of better than 70 percent was achieved, and the Hilbert-Schmidt norm-squared
on the azimuth estimation error was consistently less than 1, for noise variances
up to 8 square meters. This improved performance was achieved at a considerable
savings in memory requirements over the deterministic model. The total size of the
X-band data libraries for the conditionally Gaussian model is smaller then those for -
the deterministic model by a factor of more than 16.

5.4 Conclusions

This chapter has presented a series of three simulations designed to illustrate the po-
tential for joint tracking and recognition using simulated HRR range-profiles. While
the most complete performance analysis was performed for the last of these simula-
tions, in each case we achieved general success. The implication of these results is
that joint tracking and recognition from simulated range-profiles is possible, given an
appropriate model for the the sensor data in the form of a likelihood function, data li-
braries that characterize the range profiles expected from a given target at the possiblé
orientations, and an appropriate model for the target motion. The third simulation
suggests that the conditionally Gaussian model provides improved performance over
the deterministic model, especially at high frequencies. _

Future simulations testing recognition could build on these efforts in many
important ways. Of primary interest is adaptation of the simulations to operate
on real HRR data. This would require a coordinated effort to obtain range-profiles
for which ground truth values for the target shape and reflectivity, and the target
orientations at the illumination times, are known. We are currently working with
personnel in the radar community to obtain data for such a test. Also required would
be libraries of simulated data for use with the conditionally Gaussian model. This,
in turn, requires a verification of the range-profiles produced by simulators such as
XPATCH.

Other factors that will be important to include in future ATR simulations are

e extension to full polarimetric HRR data,
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¢ estimation of the complete target orientation, and
e inclusion of models with articulating parts.

Finally, and most importantly, will be the incorporation of the HRR processing used in
these simulations into systems for joint detection, tracking and recognition of multiple

targets where high resolution radar is only one of the sensors available.
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Chapter 6
Conclusions and Future Directions

The research comprising this thesis has considered the problem of automatic target
recognition using data from a high resolution radar sensor in the form of range-
profiles. Specific attention has been focused on HRR models and optimal procéssing
for recognition, issues associated with estimating orientation from range-profile data,
and simulation experiments demonstrating joint tracking and recognition using HRR
data.

6.1 Conclusions

In Chapter 1 the ATR problem was introduced. The general form of the problem
involves multiple non-cooperative targets in a scene observed by multiple sensors of
various types. The solution proposed in [31, 47, 76] was described, and it was seen
that this algorithm is dependent on kinematic priors for target motion and statistical
models for the observed data provided by the sensors. A simplified ATR problem was
considered in which a single target is observed by a HRR sensor, and the goal is to
jointly estimate its orientation and target type as it moves within the scene.
Chapter 2 provided an extensive review of the open literature pertaining to
recognition using range-profile data. A variety of techniques for ATR were described,
and several models for HRR data presented for use in ATR were examined. The
general result of the literature search is that, while many investigators recognize the
difficulty introduced to this problem by the well-known variability of range-profile
data with target orientation, most ignore this problem by assuming that the orienta-
tion is known. Only Libby [45, 44] has considered the problem of jointly estimating
orientation and target type from range-profile data, and his work does not present

¢
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results with respect to the accuracy of the orientation estimates. Additionally, most
of the HRR models employed for this problem assume that the range-profile data can
be described in terms of a low number of features that are derived intuitively and ap-
plied directly for recognition, instead of providing a direct statistical characterization

of the observations.

The problem of statistical modeling of range-profiles was studied extensively
in Chapter 3. A summary of basic concepts in high resolution radar was presented,
including the WSSUS model introduced by Van Trees [86, 87]. A deterministic model
for HRR data was discussed, and the likelihood function for varying target types and
orientations was examined using simulated data. It was observed that by modeling
the range-profile as deterministic, all of the variability of the data with orientation
was represented in the likelihood function. Thus, while recognition with this model
is seen to be possible, very accurate estimates of target orientation are necessary for
recognition to be successful. A condifionally Gaussian model for the range-profile
was introduced, and the likelihood function under this model was seen to be very
promising for recognition, in that correct recognition is possib'1‘e in the presence of

-signiﬁcant errors in the orientation estimate. A series of recognition tests were con-
ducted using this model, including tests that considered the use of full polarimetric
data and variation in two Euler angles describing the target orientation. In every
case where the two models were compared using these simple teéts, it was seen that
the recognition performance under the conditionally Gaussian model was more robust

with respect to errors in the orientation estimate.

Chapter 4 examined a variety of issues relating to orientation estimation using
HRR data. Global errors resulting from target symmetry and rotational ambiguity
were described, and a technique for resolving the rotational ambiguity was investi-
gated. The Hilbert-Schmidt bound on the error in orientation estimates was consid-
ered, and the bound was used to compare the performance under the two HRR models
described in Chapter 3 and for two different HRR sensors. The results indicated better
performance for the deterministic model in terms of orientation estimation, indicating
the need for performance bounds for the joint estimation problem. A discussion of
the importance of priors on the target kinematic state derived from dynamical models
for the target motion was conducted. The efforts by Cutaia [23] and Srivastava [76] -
were cited as important contributions to the ATR problem. The priors they develop
allow for elimination of unlikely target types through tracking measurements, and for -

¢

130




the constraining of likely future positions and orientations for the target given past
values.

A series of three simulations was presented in Chapter 5. In the first of these,
a single aircraft of known type was observed by a narrowband passive tracking ar-
ray and a high resolution radar. The simulation demonstrated joint estimation of
the target positions and orientations as it moved within the scene from the multiple
~ sensor data. In the second simulation, a single aircraft was observed by an airborne
sensor platform, and range-profile data were collected over a 10 second interval. The
estimation algorithm jointly estimated the sequence of target orientations and dis-
tinguished between two candidate target types. The results for recognition for this
simulation were very good, in that the algorithm consistently produced the correct
target type estimate. The final simulation considered an air-to-ground scenario, in
which an airborne sensor platform collects range profiles from a ground target, as
both vehicles engage in straight-line motion. The algorithm produced estimates of
the target orientations and discriminated among four candidate target types, using
only the range-profile data. This analysis of this simulation was more comprehensive
than that conducted for the previous two, in that the performance was studied as
a function of the noise level and the frequency band of the simulated range-profiles.
Also, the algorithm was tested using both of the HRR models developed in Chapter 3.
The results of this final simulation indicated better performance under the condition-
ally Gaussian model, especially when using the X-band data. All three simulations
demonstrated the potential for joint tracking and recognition, given an appropriate
dynamical model for the target motion and an appropriate model for the HRR data
in the form of a likelihood function. _

Clearly there is much work to be done on this problem. We conclude this thesis
by considering some specific directions for future work that have been revealed during

the preparation.

6.2 Future Directions

The most important direction for future work on this problem is to apply the models
developed in Chapter 3 to real range-profile data, and to adapt simulation like those
in Chapter 5 to operate on these data. This prospect brings with it several challenges.
The first of these is obtaining real data that would be appropriate for such analysis.
Many of the high resolution radar systems from which such data might be obtained
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are operated by the military, and as a result important parameters associated with the
radar are often classified. Furthermore, obtaining range-profiles for which the ground
truth in terms of the target orientations at the illumination times is exceedingly
difficult to obtain. Nevertheless, we have made contacts in this regard with personnel
at the U.S. Army Missile Command, and we are working with them toward obtaining
data for such tests in the near future. Once the data are obtained, a primary issue
will be how to construct libraries of range-profiles for use in estimation algorithms.
If the libraries are to be constructed using real data, then the question arises as to
what orientations are represented in the data, and how to address the problem of
highly nonuniform sampling of the possible orientations. Also, if the ground truth
orientations are known only to within, say, 5 degrees, then this poses an additional
problem. If instead the libraries are to be constructed using data provided by a
simulator such as XPATCH, then the question of the correspondence between real
and simulated data must be addressed. We have no results showing the degree to
which real and XPATCH simulated range-profiles for the same target and orientation
compare. ‘

In Chapter 3, we presented results indicating potentially better recognition
performance when full polarimetric range-profiles are used, in conjunction with an
appropriate structure for the polarimetric covariance. It would be worthwhile to study
the improvement in performance resulting from inclusion of multiple polarizations
through further simulations. This was not done in the simulations in Chapter 5
primarily out of a desire to keep the size of the range-profile libraries manageable.

The Hilbert-Schmidt bounds on errors in the estimation of orientation indi-
cated better performance for the deterministic model than for the conditionally Gaus-
sian model, for the single example that was considered. This result is in contrast to
the analysis presented in Chapter 3, in which we concluded that the Gaussian model
was more appropriate for recognition in the presence of errors in the orientation esti-
mate through examination of several likelihood functions. To resolve this discrepancy,
it would be very useful to obtain performance bounds on the probability of correct
recognition achievable by any estimator using a given data set. Ideally, bounds on
the performance of joint estimation of target type and orientation would be obtained,

but we have completed no such analysis at this time.

An algorithm that is currently under study by the military for ATR using
range-profiles is the Adaptive Gaussian Classifier or AGC. This algorithm is the
subject of considerable attention in the classified literature. An outline of the salient
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features of this algorithm is provided in Chapter 2, see also [26, 51]. This algorithm
bears some resemblance to the algorithms described in this thesis, in that the Gaussian
likelihood function is used for recognition. However, an important distinction is that
a Gaussian model is a.ppli'ed to positive, real-valued data whose statistics are known to
be non-Gaussian. Also, the AGC does not attempt to estimate the target orientation
from the range-profile data, but rather requires that the orientation be provided
externally. If the classified nature of this algorithm does not preclude it, there would
be considerable interest in performing a direct comparison between the AGC and the
algorithms presented in this thesis. Such a comparison would help to quantify the
gain in performance achieved by jointly estimating orientation and target type, and
would help to reveal if the increased algorithmic complexity is warranted.

Finally, and most importantly, it is desired to incorporate the range-profile
processing demonstrated in this thesis into a system for joint detection, tracking, and
recognition of multiple targets as outlined in [31, 47, 76]. Such a system represents a
major advance in the state-of-the-art in ATR algorithms. As a result of the work of
a multitude of researchers in the Center for Imaging Science, many of the pieces are
already in place. The references cited above have clearly outlined the general ATR
problem, the scene representation in terms of pattern theoretic constructs, and the
solution in terms of jump-diffusion processes. Additional work has been conducted

_in the representation of forward-looking infrared or FLIR scenes, including: joint
tracking and recognition of multiple ground vehicles from FLIR data; characteriza-
tion of the variability in FLIR images in terms of an eigenbasis representation for
the thermodynamic state of ground targets; and flexible shape modeling for rooftop
recognition in FLIR scenes. These efforts and other work will be unified to produce a
system for recognition of multiple targets, incorporating all of the variability present

in natural scenes.
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